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Abstract. Recent advances in the technology affording eye movement recordings carry the risk
of neglecting past achievements. Without the assistance of this modern armoury, great strides were
made in describing the ways the eyes move. For Aristotle the fundamental features of eye movements
were binocular, and he described the combined functions of the eyes. This was later given support
using simple procedures like placing a finger over the eyelid of the closed eye and culminated in
Hering’s law of equal innervation. However, the overriding concern in the 19th century was with
eye position rather than eye movements. Appreciating discontinuities of eye movements arose from
studies of vertigo. The characteristics of nystagmus were recorded before those of saccades and
fixations. Eye movements during reading were described by Hering and by Lamare in 1879; both
used similar techniques of listening to sounds made during contractions of the extraocular muscles.
Photographic records of eye movements during reading were made by Dodge early in the 20th
century, and this stimulated research using a wider array of patterns. In the mid-20th century attention
shifted to the stability of the eyes during fixation, with the emphasis on involuntary movements. The
contributions of pioneers from Aristotle to Yarbus are outlined.
Keywords: afterimages, binocular eye movements, nystagmus, torsion, saccades, fixations, ocular stability,
reading, picture viewing

1 Introduction

Aspects of behaviour that are universal and automatic (like eye movements) seldom warrant
description unless their normal functions are disrupted by disease or accident. Moreover,
the behaviours rarely have a well-defined history. This has certainly been the case for the
study of eye movements, as attention to them has not matched that for most other aspects
of vision. For example, in his classic book on the history of research on the senses and
perception, Boring (1942) devoted much more space to the vagaries of vision (like illusions)
than to the verities of oculomotor behaviour. This is surprising because the history of eye
movement research provides a delightful discourse between description and measurement,
between the subjective reports of effects and their objective measurement. In addition, the
study of eye movements has, perforce, addressed the integration of vision and action. This
integration is not restricted to the functions served by eye movements, but to the clues
that patterns of eye movements provide for examining visual and cognitive phenomena
(see Carpenter 1988, 1991; Findlay and Gilchrist 2003; Land and Tatler 2009; Tatler 2009;
Tatler and Wade 2003; Wade 2007; Wade and Tatler 2005; Wade et al 2003). Moreover, the
descriptions of oculomotor behaviour are based on the sense that is observing its own
actions: eyes observing eye movements. One of the intriguing aspects of the history we are
about to examine is that subjective impressions of their motor aspects were often taken as
evidence of their occurrence (or absence) rather than observing the eyes of others. Subjective
impressions (feelings) of displacements in the orbit were used as an index of whether the
eyes had moved, and this became particularly significant in the context of vertigo.

Contemporary accounts of eye movements tend to fall under two headings—gaze stability
and gaze shift (see Leigh and Zee 2006; Walls 1962). These divisions represent the distillations
of centuries of study during which the dynamic features of oculomotor behaviour were only
dimly appreciated. Indeed, a particularly striking feature of the history presented here is
that ocular directions rather than ocular dynamics were the principal concerns until the late
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19th century. In this historical context, the development of descriptions and measurements
will be arranged in terms of binocularity, torsion, visual vertigo, reading and scene viewing,
and finally stability during fixation. These will be described after a brief comment on the
anatomy of the system that moves the eyes—the extraocular muscles.

Pioneers of research on eye movement either described or measured them in novel ways.
Some of the pioneers are shown in figure 1, but others of great importance are not displayed
either because no portraits of them have been found (like Lamare) or perhaps none exist
(like Porterfield and Wells).

Figure 1. Some pioneers of eye movement research. They are arranged in a clockwise chronological
sequence from Aristotle to Yarbus. The central diagram of the eyes and their musculature is from
Landolt; it was published in 1879, the year in which Hering described the discontinuous movements
of the eyes during reading (© Nicholas Wade).

2 Anatomy

The eyes move in order to locate objects of interest in the region of greatest visual resolution
fovea. They are moved by muscles attached to the eyeball and the socket. The diagram at the
centre of figure 1 was taken from Landolt’s (1879) Manual of Examination of the Eyes. The
year in which it was published was important for discoveries about discontinuities of the eye
movements, but not about ocular anatomy. The basic aspects of the extraocular musculature
were known to Claudius Galen (figure 2) in the second century.

Misalignment of the eyes was recorded in antiquity, but its reported association with
problems of binocular vision is more recent (see Duke-Elder and Wybar 1973; Hirschberg
1982; Maddox 1907; Shastid 1917; van Noorden 1996). The eye specialists in ancient
Babylonia, Mesopotamia, and Egypt must have had a working knowledge of ocular anatomy
in order to carry out the operations they are known to have performed; these were mostly on
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cataracts. The records that have survived [such as the Ebers papyrus (see Hirschberg 1982)]
relate mainly to the fees they charged and the penalties they suffered for faulty operations
rather than the conditions they cured. Their skills and understanding would have been
passed on to Greek physicians, who both developed and recorded them. Many Greek texts,
through their translations, have been transmitted to us, but any illustrations that they might
have included have not survived in their original form.

Galen was aware not only of the musculature, but also the rotations of the eye that they
effected: “Well then, since there are four movements of the eyes, one directing them in toward
the nose, another out toward the small corner, one raising them up toward the brows, and
another drawing them down toward the cheeks, it was reasonable that the same number of
muscles should be formed to control the movements” (May 1968, page 483). Similarly, Galen
had described the oblique muscles that could produce eye rolling or ocular torsion: “Since it
was better that the eye should also rotate, Nature made two other muscles that are placed
obliquely, one at each eyelid, extending from above and below toward the small corner of the
eye, so that by means of them we turn and roll our eyes just as readily in every direction” (May
1968, page 483). Thus, the three axes around which the eye can rotate were clearly described,
but the emphasis was on the direction the eye would take following a rotation rather than
on the rotations themselves. Despite the clear statement about torsion, evidence of it was
to wait many centuries. The problem related to reconciling the anatomy of the eye muscles
with the difficulty of observing small rotations of the eye around the optic axis. Torsion was
contentious because it was difficult to detect, unlike misalignments of the eyes which have
been commented on for many centuries. Deviations of the two eyes, like those that occur
with squint or strabismus, are easy to detect, and it is this aspect of ocular direction that was
reported upon at an early stage.

Figure 2. Galen’s eye. The portrait of Claudius Galen (ca 130–200) was derived from an engraving in
Pettigrew (1840a). The diagram of the eye (from Magnus 1901) was based on a description given by
Galen, who provided details of the six extraocular muscles and their functions (© Nicholas Wade).

Most of Galen’s dissections were on rhesus monkey (Singer 1956), although the results
were subsequently adopted as applying to humans. Galen’s anatomy informed science and
medicine for well over 1000 years, largely due to the restrictions that were subsequently
placed on dissections. It resulted in a reliance on his works on anatomy, which were
recounted dogmatically until the time of Andreas Vesalius (1543). Greek anatomical wisdom

Please provide callout for fig2figure 2 in the text.
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was retained by Islamic scholars, who translated many books into Arabic and eventually
transmitted them to late mediaeval students (O’Leary 1949). Galen’s medical works were
translated into Arabic by Hunain ibn Is-hâq (ca 807–877). The earliest surviving diagrams of
the eye are to be found in Islamic manuscripts (see Meyerhof 1928; Polyak 1942, 1957), of
which that by Hunain ibn Is-hâq is probably the oldest. It is essentially a functional diagram,
since it adopts different viewpoints for different parts of the eye. This could be the reason
why the pupil and the lens are shown in circular form, and the lens is situated in the middle of
the eye. The extraocular muscles are also shown extended from the eyeball. The illustration
was copied several times in the centuries that followed. Thus, Arabic accounts of the eye
drew on Galen for inspiration, but their illustrations reflect a greater concern with geometry
than with anatomy.

Representations of the extraocular muscles became more refined in medical texts,
particularly after the gross anatomy of the eye was accurately drawn by Christoph Scheiner
(1571–1650) in 1619. Distinctions were made between the internal and external musculature,
although more attention was paid to the operation of the former in accommodation, than
the latter in scene scanning. The Scottish physician, William Porterfield (ca 1696–1771), not
only distinguished between these (introducing the term ‘accommodation’ in the process)
but also displayed some appreciation of the dynamic aspects of eye movements:

The Motions of the Eye are either external or internal. I call external, those Motions performed
by its four straight and two oblique Muscles, whereby the whole Globe of the Eye changes its
Situation or Direction. And by its internal Motions, I understand those Motions which only
happen to some of its internal Parts, such as the crystalline and Iris, or to the whole Eye, when
it changes its spherical Figure, and becomes oblong or flat.... Now, though it is certain that only
a very small Part of any Object can at once be clearly and distinctly seen, namely, that whose
Image on the Retina is in the Axis of the Eye; and that the other Parts of the Object, which
have their Images painted at some Distance from this same Axis, are but faintly and obscurely
perceived, and yet we are seldom sensible of this Defect; and, in viewing any large Body, we
are ready to imagine that we see at the same time all its Parts equally distinct and clear: But
this is a vulgar Error, and we are led into it from the quick and almost continual Motion of the
Eye, whereby it is successively directed towards all the Parts of the Object in an Instant of Time;
for it is certain, that the Ideas of Objects, which we receive by Sight, do not presently perish,
but are of a lasting Nature.... And this is the Reason why the Globe of the Eye moves so quickly,
and that its Muscles have such a Quantity of Nerves to perform their Motions (Porterfield 1737,
pages 160, 186–187).

It is the external motions that will be considered here, first in terms of eye position and
then with regard to dynamic eye movements. It took many years before solutions to the
“vulgar Error” of complete scene visibility were either entertained or given empirical support.

3 Binocular eye movements

One of the most distinctive features of eye movements is related to their binocularity—they
tend to move together. Such conjoint motion is not always in the same direction, as was
noted by Aristotle (figure 3a) more than 2000 years ago. He distinguished between version
(movements in the same direction) and convergence eye movements. He also commented
that there were certain movements that were not possible, namely, divergence beyond the
straight ahead, and movements of one eye upward and the other downward. This reflected
Aristotle’s belief that the two eyes operated as a unit rather than independently:

Why is it that we can turn the gaze of both eyes simultaneously towards the right and the
left and in the direction of the nose, and that of one eye to the left or to the right, but cannot
direct them simultaneously one to the right and the other to the left? Similarly, we can direct
them downwards and upwards; for we can turn them simultaneously in the same direction,
but not separately. Is it because the eyes, though two, are connected at one point, and under
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such conditions, when one extremity moves, the other must follow in the same direction,
for one extremity becomes the source of movement to the other extremity (Ross 1927, pages
957b–958a).

(a)                                                                           (b)  
Figure 3. (a) Aristotle’s eyes. The portrait of Aristotle (ca 384–322 BC) was derived from an engraving
in Wood (1880), and the diagram of the eye was made by Magnus (1901) from the description given
by Aristotle. (b) Ptolemy’s world. Claudius Ptolemy (ca 100–170) is most closely associated with his
geocentric model of cosmology; here he has his eye on Earth while viewing the heavenly bodies.
However, his books on optics described many features of perception as well as binocular coordination
(© Nicholas Wade).

Aristotle described many features of perception, including strabismus and the ensuing
diplopia: “Why do objects appear double to those whose eyes are distorted? Is it because
the movement does not reach the same point on each of the eyes?” (Ross 1927, page 958b).
His descriptions were based on acute observations, but he did not conduct experimental
studies on binocular vision, as Ptolemy (figure 3b) did. Ptolemy devised a board in order
to examine the range of binocular single and double vision (see Howard and Wade 1996;
Smith 1996). He also remarked on the limitations of eye movements with regard to binocular
combination: “These phenomena occur only by virtue of the horizontal separation of the
eyes since the height and the depth of the eyes are the same. Both visual axes turn until the
bases of the pyramids coincide on the object. It is possible for the eyes to turn in opposite
directions left and right, but not up and down. They retain their vertical position, but can
converge horizontally” (Lejeune 1956, page 34). The links between the optics of Ptolemy and
of Ibn al-Haytham or Alhazen (figure 4a) are many, and it was in the context of binocular
vision that Alhazen made a fuller description of coordinated eye movements:

When the beholder fixes his sight on an object, the axes of both eyes will converge on that
object, meeting at a point on its surface. When he contemplates the object, the two axes will
together move over the surface of the object and together pass over all its parts. And, in general,
the two eyes are identical in all their conditions, and the sensitive power is the same in both of
them, and their actions and affections are severally always identical. When one eye moves for
the purpose of vision, the other eye moves for the same purpose and with the same motion:
and when one of them comes to rest, the other [likewise] is at rest. Thus it is not possible that
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one eye should move for the purpose of seeing while the other remains motionless, nor that
one eye should strain to look at an object without the other straining to look at the same object,
unless some obstacle or cover or some other accident intervened, thus hindering one of the
eyes from participating in the act performed by the other. When both eyes are observed as
they perceive visible objects, and their actions and movements are examined, their respective
actions and movements will be found to be always identical (Sabra 1989, page 229).

(a)                                                                           (b)

Figure 4. (a) Binocular visionary. All portraits of Ibn al-Haytham or Alhazen (ca 965–1039) are fanciful;
this one is after an illustration in Duke-Elder and Abrams (1970), and the diagram of the eyes and
visual pathways is from Polyak (1942). (b) Leonardo’s eye and brain. The portrait of Leonardo da Vinci
(1472–1519) is after an 1808 engraving in The Historic Gallery of Portraits and Paintings, and it is
enclosed within his diagram of the eye (from McMurrich 1930); both are shown within a copy of his
drawing of the visual pathways leading to the ventricles (MacCurdy 1938) (© Nicholas Wade).

Here we find one of the earliest indications that the actions of the eyes can be examined
by observation rather than by introspection, although it was many centuries before it was
put into practice. Theory rather than observation drove many of the interpretations. Galen
believed that the origin of the visual pathways was located in the anterior ventricle of the
brain, where the animal spirit could interact with the visual spirit, borne by the optic nerves.
The optic nerves themselves came together at the optic chiasm, but each of the nerves
remained on its own side. Three ventricles were enumerated in Galenic anatomy, and they
were incorporated into late medieval philosophy as representing the sites of perception,
reasoning, and memory (see Weisheipl 1980). The prevalence of this notion is evident in
Leonardo da Vinci’s analysis of binocular eye movements and his drawings of the visual
pathways: the optic nerves lead directly into the first of the three ventricles (figure 4b). He
wrote: “Saw a head in two between the eyebrows in order to find out by anatomy the cause of
equal movements of the eyes, and this practically confirms that the cause is the intersection
of the optic nerves” (MacCurdy 1938, page 186). Since the visual spirit was thought to pass
from the ventricle to the eyes, it was generally believed that monocular vision was superior
to binocular. This was because the visual spirit was then channelled to one eye rather than
two. The common locus of the chiasm was also a factor in the interpretation of coordinated
binocular eye movements, as is evident from the statement by Francis Bacon (figure 5a):
“The eyes do move one and the same way; for when one eye moveth to the nostril, the other
moveth from the nostril. The cause is motion of consent, which in the spirits and parts
spiritual is strong” (Bacon 1857, page 628).
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A more mechanistic interpretation was adopted by Robert Smith (figure 5b), a mathe-
matician at Trinity College, Cambridge. In the context of eye movements Smith described a
simple procedure for verifying the conjoint movements of the eyes. He was also able to relate
eye positions to stimulation of corresponding retinal points and diplopia:

The habit of directing the optick axes to the point in view is so strong that it is very difficult to
do otherwise; insomuch as when one eye is shut and the other is in motion one may feel by
ones fingers laid upon the eye-lid, that the eye which is shut, always follows the motions of the
eye that is open. But if by squinting or by depressing an eye with ones finger, the optick axes are
not directed to the same point; in these cases objects appear double: now it is plain that their
pictures are not painted upon corresponding places of the retinas (Smith 1738, pages 46–47).

Smith integrated several strands of interest in binocular vision: singleness of vision with
two eyes was considered to be a consequence of stimulating corresponding points on the
two retinas. First, distinct vision was restricted to the central region of the retina; secondly,
both eyes moved in unison to retain correspondence; thirdly, this could be demonstrated
by feeling the movements of the closed eye; and, finally, double vision occurs when one
eye is moved out of alignment with the other. Such squinting can be induced artificially (by
displacing one open eye with the finger), and it also occurs naturally.

Figure 5. (a) Bacon’s Organum. The portrait of Francis Bacon (1561–1626) is derived from an engraving
in Knight (1837); he is depicted in text from the Instauratio Magna as well as its title page. It was part of
the Novum Organum, the new instrument that was to replace Aristotle’s Organon. The text describes
the essentials of inductive science, and it cautions against placing too great a reliance on the senses
because of the two fallacies to which they are prone: they either fail or they deceive. (b) Smith’s Opticks.
Robert Smith (1689–1768) was an ardent advocate of Newtonian optics; his portrait is accompanied by
the title page of his Opticks (Smith 1738) as well as a diagram of the ruler illusion, seen when using two
eyes (© Nicholas Wade).

By the time William Charles Wells (1757–1817), who was born in America but practised
medicine in London, was writing about binocular visual direction, the conjoint motions
of the eyes were an accepted fact. Moreover, he was able to support the statements with
experiments using afterimages. The main point at issue was whether they were learned or
innate:
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The thing itself is universally acknowledged, though a dispute has arisen whether custom or an
original property be the cause, that every voluntary motion of one eye, in persons who do not
squint, is attended with a corresponding motion in the other. Now as all voluntary motions are
produced by muscular action, it follows, that every state of action, in the muscles of one eye,
has its corresponding state in those of the other, and that the two are constantly conjoined.
When, therefore, the spot [afterimage] appears single to both eyes in their free positions, the
states of action in the muscles must be such, that the direction, in which it is seen by one eye,
coincides with that in which it is seen from its place, no change is hereby made in the action of
its muscles; for the state of action in those of the free eye is confessedly the same as it was; and
it will be attended with a corresponding state in those of the distorted eye; in proof of which
it may be observed, that, whenever the pressure is removed, the distorted eye immediately
returns to its former position, without the aid of any new muscular effort. The conclusion then
is, that, since there has been no alteration in the action of its muscles, neither ought there to be
any in the direction of the spot seen by it, which is the fact to be explained (Wells 1792, pages
71–72).

Wells introduced the use of afterimages and their apparent motion or stability as an
index of whether the eyes had moved due to voluntary or involuntary muscular activity. This
introduced another aspect to the study of eye movements, and it was taken up by Charles Bell
(figure 6), both in terms of conjoint motion and the distinction between the consequences of
voluntary and involuntary eye movements. With regard to the former he stated:

We can distort our eyes by an unnatural effort, but we cannot squint: that is to say, we can bring
our eyes into such a forced situation that we cannot see anything distinctly; but we cannot
keep one eye distinctly upon an object and turn the other from it. . . . This shows the strict
correspondence betwixt the moving muscles of the eyeball. . . Why should it be more difficult
for a squinting person to learn to look straight when he pleases? The reason of the greater
difficulty is obvious, that in making the eyes converge or diverge the will is acting upon both
eyes equally; but to distort one eye inward or outward, and at the same time to keep the other
fixed, is to me an absolute impossibility (Bell 1803, pages 359–360).

Figure 6. (a) Bell’s Anatomy. Charles Bell (1774–1842) [after a frontispiece engraving in G Bell (1870)] is
portrayed at the time when he moved from Edinburgh to London (about 1804); he is enclosed within
his diagram of nerves of the head (from Bell 1844) and accompanied by the title page of his Anatomy,
the other volumes of which were written by his brother, John Bell. (b) The motions of Bell’s eyes. An
older Bell (from Pettigrew 1840b) is shown with the first page of his article on eye movements in which
he described experiments using afterimages and displacing the eye passively or actively (© Nicholas
Wade).
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Bell (1823) further developed the contrast between voluntary and involuntary eye
movements by recourse to experiments like those performed by Wells (1792), without
mentioning the latter:

there is an inseparable connection between the exercise of the sense of vision and the exercise
of the voluntary muscles of the eye. When an object is seen, we enjoy two senses; there is an
impression upon the retina; but we receive also the idea of position or relation which it is not
the office of the retina to give. It is by the consciousness of the degree of effort put upon the
voluntary muscles, that we know the relative position of an object to ourselves.... If we move
the eye by the voluntary muscles, while the impression [of an afterimage] continues on the
retina, we shall have the notion of place or relation raised in the mind; but if the motion of
the eye-ball be produced by any other cause, by the involuntary muscles, or by pressure from
without, we shall have no corresponding change of sensation (Bell 1823, pages 178–179).

Statements like those above regarding binocular eye movements were frequently repeated
throughout the 19th century, but they were given more empirical support. Indeed, the origins
of eye movement research were considered by some to belong to this period. Boring (1942)
suggested that the monograph by Johannes Müller (figure 7), published in 1826, marked the
onset of systematic studies. Carmichael (1926), meanwhile, argued that the article by Bell in
1823 was a more appropriate starting point. A stronger case can be made for crediting Wells
(1792) with having conducted the first systematic studies of eye movements (see Tatler and
Wade 2003; Wade and Tatler 2005).

(a)                                                                      (b)

Figure 7. (a) Müller’s vision. The portrait of Johannes Müller (1801–58) is derived from an illustration in
Hirsch (1929); his book on the physiology of vision and movements of the eyes was concerned almost
entirely with their binocular coordination. (b) Müller’s physiology. Müller [after a lithograph in Stirling
(1902)] is shown with the title page of his influential book on human physiology. In it he elaborated the
doctrine of specific nerve energies as well as describing binocular eye movements (© Nicholas Wade).

Müller, who was to become professor of physiology in Berlin, published two books on
vision in 1826: one (Müller 1826a) was on comparative physiology, in which he gave detailed
descriptions of eye position following eye movements; the title page is shown in figure 7a. The
other (Müller 1826b) was on subjective visual phenomena. A decade later, Müller provided a
more extensive survey of vision in his Handbuch der Physiologie des Menschen; this book was
translated into English as Elements of Physiology (Müller 1840, 1843). He was concerned with
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relating binocular eye movements to binocular single vision and to the breakdown of the
latter in squinting or strabismus:

Some of the most remarkable facts illustrating the association and antagonism of muscular
actions are presented by the muscles which move the eyes. The corresponding branches of the
third or motor oculi nerve of the two sides have a remarkable innate tendency to consensual
action, a tendency which cannot be ascribed to habit. The two eyes, whether moved upwards,
downwards, or inwards, must always move together; it is quite impossible to direct one eye
upwards and the other downwards at the same time. This tendency to consensual motion is
evidenced even from the time of birth (Müller 1843, pages 928–929).

Hermann Helmholtz (figure 8a) was one of Müller’s students, and he also wrote extensively
on eye movements. Indeed, this was the topic of his Croonian Lecture to the Royal Society in
1864 in which he wrote: “We cannot turn one eye up, the other down; we cannot move both
eyes at the same time to the outer angle” (Helmholtz 1864, page 192). The difference between
Aristotle and Helmholtz was that the latter could support the statement by experiment
using afterimages. Helmholtz was to return to Berlin after positions in the universities of
Königsberg (now Kaliningrad), Bonn, and Heidelberg. Eye movements proved to be one of
the battle grounds between him and Ewald Hering (figure 8b), who made similar, but more
subtle, statements about binocular eye movements (see Turner 1994), and these are now
referred to as Hering’s law of equal innervation:

The two eyes are so related to one another that one cannot move independently of the other:
rather, the musculature of both eyes reacts simultaneously to one and the same impulse of the
will. . . . It is possible for us to move both eyes simultaneously about different angles and with
different speeds. . . and even to move one eye outward and inward while the other remains still.
We are able to do this, not because we simultaneously give each eye a special innervation, but
because in these movements each eye receives two different innervations. One is a turning
movement of both eyes to the right or left and the other is inward or outward turning of both
eyes. Since these two innervations of the two eyes work together in one eye and conversely in
the other, the resultant movement in each eye must necessarily be different (Hering 1977, page
17).

Hering was a very productive and ingenious physiologist (see Baumann 2002) who worked
in Leipzig, then Vienna, and finally in Prague. For him the two eyes moved as a single unit,
and this union was not dependent upon learning or association, as Helmholtz maintained.
Hering stated this point repeatedly, and he referred to the yoked actions of the two sets of
eye muscles. His diagrams reflected this, too; the motions of each eye were referred to those
of an imaginary eye between them. In the context of visual direction, the locus from which
objects are seen was called the cyclopean eye. For binocular eye movements he referred to the
directions relative to this ‘imaginary single eye’ as the binocular visual line. Fixations occur
between movements of the eyes, and Hering showed a clear understanding of the functions
that such movements served—that is, his concerns were not only with where the eye alights
but with how it reaches that point. Technical constraints tended to restrict experimental
studies to determining the orientation of the eye rather than how it moved.

One of the great advantages that both Helmholtz and Hering bestowed on eye movement
research was the introduction of bite bars for controlling head position. A remarkable
feature of experimental work in the 19th century was the reliance on data from a single
observer. Helmholtz himself epitomised this tendency. In common with his contemporaries,
he considered the processes of perception to be universal so that general principles could be
derived from particular observations. Much of the polemic surrounding the heated debates
in 19th-century visual science was based on the conviction that personal perception was
pervasive; individual differences were only taken seriously in areas like colour blindness.
Novel observations were accepted as fact when they were in turn seen by another investigator.
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(a)                                                                           (b)

Figure 8. (a) Helmholtz’s Handbuch (1867). The portrait of Hermann Helmholtz (1821–94) is after
an engraving in Koenigsberger (1902); the diagram of the eye is from the Handbuch, the title page
of which is also shown. (b) Hering’s Binocular Vision. Ewald Hering (1834–1918) is shown with the
title page of his book on binocular vision in which the principle of equal innervation was enunciated
(© Nicholas Wade).

Helmholtz was at his most vulnerable when his observational skills were impugned (see
Howard 1999). He set great store by his control of fixation and by his ability to assess his eye
position with accuracy.

4 Torsion

In the mid-19th-century ocular torsion assumed considerable theoretical importance.
Concern with the geometry of eye rotations and with the specification of their constraints led
to the formulations of laws that could only be verified by means of measuring its magnitude.
Although many were involved in this endeavour, the work was summarised and integrated
by Helmholtz and Hering. A number of preliminary issues required resolving before the
geometry of eye movements could be described with accuracy. The first concerned the centre
of rotation of the eye. Despite the fact that small translations of the eye occurred, the centre
of rotation was determined to be 13.6 mm behind the vertex of the cornea (Helmholtz 1867).
The orbit of the eye can take a variety of locations as the head moves, and so a further
question related to the position the head should adopt for experiments on eye movements.
Helmholtz defined the planes of the head with regard to the symmetry between the two sides
and the line joining the two eyes. The former was called the median plane, and the latter the
transverse plane. The head was said to be upright when the median plane was vertical, and
the transverse plane horizontal.

With the head in this erect position some reference position for the eyes was required
as was some system of coordinates relative to which rotations could be described. The
adoption of fixed axes around which the eye can rotate is arbitrary. Helmholtz described two
systems: the Fick axis system in which the vertical axis is assumed to be fixed to the skull
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and the Helmholtz system in which the horizontal axis is so fixed. When the eye moves from
the primary position along a horizontal or a vertical axis, it assumes a secondary position;
movements to any other (oblique) location involve the eye in a tertiary position.

One of the principal problems that Helmholtz and Hering addressed was the orientation
of the eyes when they moved from the primary position. This was defined as the position
of the eyes when they are horizontal and perpendicular to the axis between their centres of
rotation (the interocular axis). The technique used for determining eye orientation was to
generate a linear afterimage when the eye was in the primary position and match it with a
real image in another direction. Helmholtz considered that the method had been introduced
by Ruete (figure 9b) in 1845, whereas in fact it had been applied to dynamic torsional eye
movements by Wells (1794a). Helmholtz remarked:

The best way of verifying these facts is by using after-images, as was originally suggested by
Ruete. The way to do it is to stand opposite a wall covered with paper on which horizontal and
vertical lines can be distinguished, the pattern, however, not being so sharply outlined as to
make it difficult to see after-images on it. The best background is one of a smooth pale grey
colour. Directly opposite the observer’s eye, and on the same level with it, a black or coloured
ribbon is stretched horizontally, two or three feet long; standing out in sharp contrast to the
colour of the wall-paper.... Now let the observer look intently for a little while at the middle
of the band, and then, without moving his head, turn his eyes suddenly to another place on
the wall. An after-image of the band will appear there, and by comparing it with the horizontal
lines of the wall-paper, the observer can see whether the after-image is horizontal or not. The
after-image itself is developed on those points of the retina belonging to the retinal horizon;
and during the motions of the eyes it indicates those parts of the visual field on which the
retinal horizon is projected (Helmholtz 1925, page 45).

Frans Cornelis Donders (figure 9a) used this technique to measure the eye orientation in
secondary and tertiary locations and provided a general relationship that Helmholtz (1867)
elevated to the status of a law:

The law, given first by Donders and confirmed by all subsequent investigations, is that when
the position of the line of fixation is given with respect to the head, the angle of torsion will
invariably have a perfectly definite value for that particular adjustment; which is independent
not only of the volition of the observer but of the way in which the line of fixation arrived in the
position in question (Helmholtz 1925, page 44).

Thus, no matter what path the eye pursues to reach a given position, the degree of torsion
will be the same.

Donders’ law was formulated for movements of the eye from the primary position.
Another lawful relationship was formulated by Johann Benedict Listing (1808–82), a mathe-
matician who studied under Gauss at Göttingen. Whereas Donders’ law stated that the eye
always assumed the same orientation at a particular location, no matter how it had been
reached, Listing’s law specified the orientation that was adopted in a particular position.
Listing did not publish an account of it himself but it was initially described in Ruete’s (1853)
book on ophthalmology. Again it was Helmholtz who named it Listing’s Law; it was concerned
with describing the axis about which the eye rotates from the primary position. Helmholtz
described it in the following way:

Accordingly, for the case of a pair of emmetropic eyes with parallel lines of fixation, the law
of their motion may be stated as follows: When the line of fixation is brought from its primary
position into any other position, the torsional rotation of the eyeball in this second position
will be the same as if the eye had been turned around a fixed axis perpendicular to the initial
and final directions of the line of fixation. This is known as Listing’s law of ocular movements,
because it was first stated by him in this form (Helmholtz 1925, page 48, emphasis in original).

Both Donders’s and Listing’s laws apply for eye movements from the primary position, that
is, with the eyes parallel and directed to the horizon. Empirical studies generally supported
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the laws, and Helmholtz reported that eye rotations could be measured to within half a degree
using the afterimage method. However, most eye movements are directed to objects that are
nearer than optical infinity and so will involve some degree of convergence. Alfred Wilhelm
Volkmann (1846) demonstrated that departures from the laws occur with convergence.

(a)                                                               (b)

Figure 9. (a) Donders’s See. Frans Cornelis Donders (1818–89) is best known in psychology for his
work on reaction time and the text (from Donders 1869) in which his face is embedded describes
this. He was an ophthalmologist who worked in Utrecht and wrote on accommodation as well as eye
movements. (b) Ruete’s ophthalmotrope. Christian Ruete (1810–67) was professor of ophthalmology
first at Göttingen then at Leipzig. He employed afterimages to measure eye orientation and made a
modified model of Helmholtz’s ophthalmoscope. He is shown with his ophthalmotrope, as illustrated
in Helmholtz (1867) (© Nicholas Wade).

The formulation of Donders’ and Listing’s laws enabled intricate instruments to be made
that indicated the orientations of the eyes in various gaze directions. Ruete (figure 9b) made
one such, called an ophthalmotrope, and Wilhelm Wundt (1862) produced a more complex
model. Both displayed the understanding that had been achieved about the manner in
which eye position was determined and also of the combined operation of the paired eye
muscles. They were of considerable use in examining the pathology of eye movements and
they emphasised the united activities of the two eyes. In addition, the ophthalmotropes
indicated the importance that was placed on eye position following eye movements rather
than the characteristics of the eye movements themselves.

Torsion was easier to observe as a consequence of inclining the head, and it is in this
context that Scheiner (1619) hinted at its occurrence: “in an eye movement in which the
middle part of the eye remains stationary, it is because it moves by a corresponding head
rotation” (page 245). A more precise description was provided by John Hunter (1786), who
outlined the function that the oblique muscles could serve; when the head was tilted to one
side, they could rotate the eyes in their sockets in the opposite direction:

Thus when we look at an object, and at the same time move our heads to either shoulder, it
is moving in the arch of a circle whose centre is the neck, and of course the eyes would have
the same quantity of motion on this axis, if the oblique muscles did not fix them upon the
object. When the head is moved towards the right-shoulder, the superior oblique muscle of
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the right-side acts and keeps the right-eye fixed on the object, and a similar effect is produced
upon the left-eye by the action of the inferior oblique muscle; when the head moves in the
contrary direction, the other oblique muscles produce the same effect (Hunter 1786, page 212).

Bell (1823) argued on the grounds of anatomy and experiment “that the oblique muscles
are antagonists to each other, and that they roll the eye in opposite directions, the superior
oblique directing the pupil downwards and outwards, and the inferior oblique directing it
upwards and inwards” (page 174). The experiments he conducted on rabbits and monkeys
consisted of either noting changes in tension of the oblique muscles during eye movements
or sectioning an oblique muscle in one eye and noting the consequences. Three years later,
Müller (1826a) tried to measure torsion by marking the conjunctiva and noting any rotations
of the marks. He was unable to see any and concluded that the eyes did not undergo torsion.

In contrast to Müller’s conclusion, observational studies by Alexander Friedrich Hueck
(1838) lent support to the occurrence of torsion. Hueck, who like Volkmann was from Tartu,
examined rotation of the eyes in the opposite direction to head tilt in more detail and tried
to measure its magnitude. He stated that the eyes remain in the same relation to gravity for
head tilts up to 28 deg—that is, there was perfect compensation for head inclination: “The
observation of actual eye torsion shows that vertical diameter of the eyeball remains vertical
if the head is inclined sideways by up to 28 deg, and therefore during this movement the
image maintains its location unchanged. If we incline the head to the side by more than 28
deg, the eyeball can no longer retain its position with respect to the head rotation” (Hueck
1838, page 31).

Subsequent experiments have not fully supported Hueck’s claim: while rotation of the
eyes does occur, its magnitude is only a fraction of the head tilt. This would now be called
ocular countertorsion, and it has a gain of around 0.1 (Howard 1982). Thus, when the head
is tilted laterally by 30 deg, the eyes rotate in the opposite direction by about 3 deg. It was
because the magnitude of countertorsion is small that it was difficult to measure with any
degree of precision, and there was much debate concerning its occurrence at all. A review of
the 19th-century debates concerning countertorsion was provided by Willibald Nagel (1896),
who was able to resolve the dispute regarding its occurrence in animals but not in humans.
Howard and Templeton (1966) and Howard (1982, 2002) describe the techniques that have
been applied to measure countertorsion in the 20th century.

Many years before these experiments had been conducted, Wells (1794a) examined
dynamic torsion using the movement of afterimages relative to real images. He was disputing
the claim that the eyes could not rotate around the optic axis:

But surely the parts which connect the eye-ball to the socket are sufficiently flexible to allow
it to move in some degree round its axis; and, whoever bestows the least consideration upon
the origin, progress, and termination, of the oblique muscles of the eye must perceive that
they have the power of giving it such a motion. That the eye actually does roll upon its axis, is
shewn by the following experiment: I placed a long thin rule parallel to the horizon, its edge
being towards me, and gave it such a position, in other respects, that it was the only object
intervening between my eyes and a bright sky. I afterwards fixed my eyes upon a mark in
the middle of its edge, and having obtained in this way a long narrow luminous spectrum
[afterimage], I turned myself, having my eyes pointed to a spot over my head, till I became
giddy. I then stopped and directed my eyes to the middle of a perpendicular line drawn upon
the wall of my chamber. A luminous line, the spectrum of the rule, now appeared upon the wall,
crossing the real and perpendicular line at right angles, or nearly so. The two lines, however,
did not for a moment preserve the same position with regard to each other, but continually
moved round their common point of intersection, in such a manner that the extremities of the
one alternately approached and receded from the extremities of the other.... if we have made
ourselves giddy while our eyes were directed to a point above us, the apparent motions do not
continue nearly so long as if the giddiness had been produced while the head was erect, the
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body being turned the same number of times in both cases.... when we consider the mechanical
resistance to the rolling of the eye upon its axis, and the feebleness of the oblique muscles,
which alone can give it this motion, it is natural to expect that, when produced involuntarily, it
should continue but for a very short time (Wells 1794a, pages 906–907).

Wells was recording torsional nystagmus, and he compared it with the discontinuous eye
movements that follow rotation of the body with an upright head. This he had studied earlier
(Wells 1792), and it is in this context that nystagmus was first recorded with any degree of
precision.

5 Nystagmus

Concerns with binocular coordination and torsion were related to the position of the eyes
following some movement, and it was generally assumed that the eyes moved quickly but
smoothly to new positions. An appreciation of the jerkiness of eye movements arose in
the context of visual vertigo, particularly that generated by body rotation, where the eyes
moved slowly in one direction and rapidly in the reverse. This is called nystagmus, and
the term derives from the nodding movements of the head when in a drowsy state—the
head drops slowly and then is jerked back. The similar smooth and jerky movements of
the eyes can be elicited in a number of ways and are associated with a variety of maladies.
That great French nosologist François Boissier de Sauvages de Lacroix (1772a) called one
condition nystagmus; it involved uncontrolled back and forth movements of the eyes. He
also discussed vertigo in his classification of diseases and described it as: “An hallucination
which takes place when stationary objects appear to move and rotate around us. . . The
cause of vertigo is nothing other than an impression on the retina which is equivalent to that
excited by objects that paint their images successively on different parts of that membrane”
(Sauvages de Lacroix 1772b, page 50). He drew parallels with persisting visual images when
observing rapidly moving lights and suggested that the sensitivity of the retina was changed
by the retrograde movements of blood in the vessels supplying it. He did discuss the effects of
body rotation, and the possibility of unconscious eye movements during and after rotation
was entertained. An alternative to speculating on processes in the retina or brain was to
study the phenomenon of vertigo itself. Interest in vertigo was principally medical, and most
observations upon it were made in that context.

Visual motion of the world following body rotation was described in antiquity. Perhaps
the fullest accounts were given by Aristotle’s pupil Theophrastus (see Sharples 2003); he
described the conditions that can induce dizziness, including rotation of the body, but he
did not relate these to movements of the eyes. Porterfield (1759) did add an eye movement
dimension to it, but he denied their existence following rotation—because he was not aware
of feeling his eyes moving. That is, the index of eye movement he used was the conscious
experience of it. He proposed that the post-rotational visual motion was an illusion in which
the stationary eye is believed to be moving. Porterfield’s description stimulated others to
examine vertigo and to provide interpretations of it, some of which involved eye movements.
The most systematic studies were carried out by Wells (1792, 1794a, 1794b). He formed an
afterimage (which acted as a stabilised image) before rotation so that its apparent motion
could be compared with that of an unstabilised image when rotation ceased. His account
was brief, simple, and insightful: “When we stop ourselves while giddy from turning, our
eyes do not return to a state of rest along with our bodies, but continue to move for some
time after. Of this, however, we are not conscious; and hence we imagine the relative motion
between ourselves and objects at rest to be possessed by the latter” (Wells 1794a, page 902).
The direction of the consequent slow separation of the two images and their rapid return
(nystagmus) was dependent on the orientation of the head and the direction of body rotation.
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Thus, Wells used afterimages to provide an index of how the eyes move by comparing them
with real images. He confirmed his observations by looking at the eyes of another person
who had rotated and then stopped. By these means he cast doubt on evidence derived from
subjective impressions of how the eyes were moving. Wells described fast and slow phases of
nystagmus and provided the first account of discontinuous eye movements in vertigo; he
related the direction of visual vertigo to head position during rotation; and he found that
nystagmus could be suppressed by attending to targets.

Jan Purkinje (figure 10) is best known to eye movement researchers through his descrip-
tions of the images reflected from the surfaces of the eye. Light projected onto the eye reflects
from the external surface of the cornea, the internal surface of the cornea, the external surface
of the lens, and the internal surface of the lens. These reflections are known as Purkinje
images, and they can be used to track eye position with great accuracy. Purkinje essentially
repeated Wells’s experiments on eye movements following body rotation, but was ignorant of
them (see Purkinje 1820, 1825). Indeed, Purkinje’s experiments were inferior to those of Wells,
but both adopted interpretations of visual vertigo in terms of eye movements. Purkinje added
a novel method for studying vertigo and eye movements—galvanic or electrical stimulation
of the ears. The technique was amplified by Eduard Hitzig (figure 11a). He examined eye and
head movements during galvanic stimulation of the ears and likened nystagmus so produced
to a fisherman’s float drifting slowly downstream and then being snatched back (Hitzig 1871).

(a)                                                                 (b)

Figure 10. The two portraits of Jan Evangelista Purkinje (1787–1869) are after illustrations in Psot-
níčková (1955). (a) Purkinje’s Schaukel. Purkinje is shown together with a rotating device of the type
used in his experiments on vertigo [after an illustration in Kruta (1969)]. (b) Purkinje images. The
reflections of a candle flame from the structures of the eye. The images were described and illustrated
by Purkinje in 1823 (see John 1959). Purkinje carried out his experiments in Prague, prior to his
appointment (in 1823) as a physiologist at the University of Breslau (now Wroclaw) (© Nicholas Wade).

Wells rotated his body voluntarily, but Purkinje was able to enlist the assistance of a
rotating device. It was a form of human centrifuge, the first model of which had been devised
by Erasmus Darwin (1801) as a treatment for insanity (Wade et al 2005). Purkinje adapted it
for generating vertigo in an experimental setting, but it continued to be used clinically—not
as a treatment for the insane but as a test of vestibular function. Indeed, the rotating chair is
now called the Bárány chair, after Robert Bárány (figure 11b). In the early 20th century, two



Pioneers of eye movement research 49

(a)                                                                           (b)

Figure 11. (a) Electrical stimulator. Eduard Hitzig (1838–1907) [after an illustration in Polyak (1957)]
applied galvanic currents to the side of the head and noted the direction of the ensuing nystagmus. The
text is the first page of his article describing and illustrating the eye movements; the experiments were
conducted while he was in Berlin. (b) Bárány’s chair. Robert Bárány (1876–1936) devised a rotating
chair for studying semicircular canal function. It was very similar to the chairs devised for the treatment
of maniacs early in the 19th century; the one shown here was derived from an illustration in Hallaran
(1818). Bárány studied vertigo in Vienna before moving to Uppsala University (© Nicholas Wade).

aspects of eye movements and vertigo attracted clinical attention. The first was the use of
post-rotational nystagmus as an index of vestibular function, and the second was stimulating
the semicircular canals with warm and cold water so that the direction of eye movements
they induce could be easily observed. These characteristics of nystagmus were defined more
precisely by Bárány (1906, 1913), who was awarded the Nobel Prize in 1914 for his vestibular
researches.

The 1870s was the decade of added interest in eye movement research because of its
assistance in determining semicircular canal function. Post-rotational eye movements were
measured and related to hydrodynamic theory, which was proposed independently by Ernst
Mach, Josef Breuer, and Alexander Crum Brown (figure 12). Breuer (1874) provided a similar
description of post-rotational nystagmus to Wells, but he was able to relate the pattern of eye
movements to the function of the semicircular canals. Breuer argued that during rotation the
eyes lag behind the head in order to maintain a steady retinal image; then they make rapid
jerky motions in the direction of head rotation. The eye movements reduce in amplitude and
can stop with rotation at constant angular velocity. When the body rotation ceases, the eyes
rotate in the same direction as prior head rotation, and the visual world appears to move in
the opposite direction interspersed with rapid returns. He also stated, like Wells, that there
is no visual awareness during these rapid returns. This is a clear reference to both fast eye
movements and to saccadic suppression, although he did not use the term ‘saccade’.

Afterimages were also employed by Mach (1873, 1875; and see Young et al 2001), who
rediscovered Wells’s method for examining post-rotational eye movements. Mach (figure 12a)
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developed his own model for examining the perception of motion. With this device, he
was able to investigate both visual orientation during tilt and the effects of rotation. He
demonstrated that vertigo can be induced by visual stimulation alone. Mach made the explicit
connection between Purkinje’s experiments on vertigo and the function of the semicircular
canals. In addition to observing an afterimage, he applied the time-honoured technique
of placing a finger by the side of the eye and of using pressure figures as stabilised retinal
images. However, perhaps the clearest descriptions of eye movements during and following
body rotation were given by Crum Brown (1874, 1878), who provided diagrams of the steady
head and jerky eye movements. Wells’s account of the dynamics of eye movements following
rotation was beautifully refined by Crum Brown, although no reference was made to Wells.
Like most other historians of the vestibular system, Mach, Breuer, and Crum Brown all
championed Purkinje as the founder of experimental research linking eye movements to
vestibular stimulation.

(a)                                            (b)                                        (c)

Figure 12. (a) Mach’s chair. Ernst Mach (1838–1916, after a photograph in Schmitz 1983) is shown
together with his device for rotating the body around different axes (from Mach 1875). Mach was a
physicist at the University of Prague. (b) Breuer’s pigeons. Josef Breuer (1842–1925) confirmed the
influence of semicircular canals on the posture of pigeons by ablation studies, the pigeons illustrated
are after a figure in Kruta (1969). He also performed experiments with humans using afterimages.
Breuer worked with Hering at the University of Vienna. (c) Crum Brown’s nystagmus. Alexander
Crum Brown (1838–1922) [after a portrait in Comrie (1932)] was able to record the slow movements
of the eyes and their rapid return (nystagmus) during body rotation, as well as the adaptation that
occurs; the saw-tooth patterns are derived from Crum Brown’s (1878) diagrams. He was professor of
chemistry at Edinburgh University (© Nicholas Wade).

6 Saccades

The term ‘saccades’ was introduced to eye movement research by Émile Javal (figure 13),
who was founder and director of the ophthalmology laboratory at the Sorbonne, Paris.
It derives from a French word referring to certain rapid movements of a horse during
dressage. The English translation of ‘saccade’ is ‘jerk’. As indicated in the previous section,
vestibular researchers had recognised the discontinuity of eye movements for some time,
and Crum Brown (1878) both described and illustrated them. However, it was not until
Crum Brown’s (1895) general consideration of eye and head movements that writers in
English used the term ‘jerk’ to describe these eye movements. Importantly, Crum Brown
recognised that such discontinuous eye movements were not confined to post-rotational
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nystagmus, and despite what we might feel, our eyes always move by these jerks as we look
around the world. Crum Brown gave a graphic description of eye movements in general:

We fancy that we can move our eyes uniformly, that by a continuous motion like that of a
telescope we can move our eyes along the sky-line in the landscape or the cornice of a room,
but we are wrong in this. However determinedly we try to do so, what actually happens is, that
our eyes move like the seconds hand of a watch, a jerk and a little pause, another jerk and
so on; only our eyes are not so regular, the jerks are sometimes of greater, sometimes of less,
angular amount, and the pauses vary in duration, although, unless we make an effort, they are
always short. During the jerks we practically do not see at all, so that we have before us not a
moving panorama, but a series of fixed pictures of the same fixed things, which succeed one
another rapidly (Crum Brown 1895, pages 4–5).

Here, Crum Brown offered an eloquent description of eye movements in which he
demonstrates an understanding not only that the eyes move in a series of jerks but also
that these vary in size, and that vision only occurs during the intervals between these jerks.
Crum Brown used the term ‘jerk’ to describe these movements, the English equivalent of
Javal’s ‘saccades’ (figure 13).

The term saccades is now so widely applied to the rapid sweeps of the eye that it is of
interest to determine the origins of its initial assignment. Raymond Dodge suggested that
the term should be used by writers in English because “German and Scandinavian writers
are commonly using the descriptive class term ‘saccadic’ to denote the rapid eye movements
for which we have only the arbitrary name of ‘type I’” (Dodge 1916, page 422). While saccade
is now a specialist term applied to a particular set of eye movements, at the time that it was
used by Javal it was an unremarkable French word, in common usage, meaning ‘jerk’ or
‘twitch’.

6.1 Eye movements in reading
Porterfield (1737) provides a link between nystagmus and saccades, although he used neither
of these terms and his analysis was logical rather than psychological. He did examine vertigo
as well as reading, and he understood the requirement for rapid eye movements in reading:

Thus in viewing any Word, such as MEDICINE, if the Eye be directed to the first Letter M, and
keep itself fixed thereon for observing it accurately, the other Letters will not appear clear or
distinct. . . . Hence it is that to view any Object, and thence to receive the strongest and most
lively Impressions, it is always necessary we turn our Eyes directly towards it, that its Picture
may fall precisely upon this most delicate and sensible Part of the Organ, which is naturally in
the Axis of the Eye (Porterfield 1737, pages 184–185).

Porterfield did not provide empirical support for the ideas he developed. He also
appreciated the historical background in which his researches were placed. Moreover, he
applied his understanding of eye movements to a wide range of phenomena, including visual
vertigo. It was from vertigo that the first signs of discontinuous eye movements derived:
the fast and slow phases of nystagmus were demonstrated with the aid of afterimages.
Afterimages were also to play an important role in appreciating the discontinuity of eye
movements generally. The studies took place in 1879, the same year in which Javal first used
the term saccades.

Hering published an extensive account of eye movements in 1879. It was a long chapter
in Hermann’s Handbuch der Physiologie, the title page of which is shown in figure 14a; the
chapter was translated into English as a book (Hering 1879a, 1942). Most of the book is
addressed to eye position, but Hering did make a general observation on eye dynamics:

In ordinary seeing the visual point constantly changes its position; for, in order to recognize
the outer objects, we must examine one after another, all their separate parts and endeavor
to perceive them with utmost acuity. This can be accomplished only by bringing their images
upon the two retinal centers. With small objects the mere turning of the eyeballs in their
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(a)                                                                  (b)

Figure 13. (a) Reading Javal. Between 1878 and 1879, Louis Émile Javal (1839–1909) wrote eight articles
on the physiology of reading; the title page of the first one is shown. The portrait reflects the ambiguity
associated with Javal and his research on reading: one source (Schmitz 1983) states that it is a portrait of
Javal by Toulouse Lautrec, whereas Sugana (1973) states that it is a portrait of Lautrec by (another) Javal!
The latter is likely to be correct. (b) Saccadic suppression. An authentic portrayal of Javal [modified
from Taylor (1937)] in text from the penultimate page of his final article (Javal 1879); saccades are
mentioned in the footnote (© Nicholas Wade).

sockets suffices. But if the object of regard is of large dimensions, we resort to turning the
head, and if necessary, the upper body, and finally even changing our location. Rarely do we
devote our attention to one spot, even for the duration of a second. Rather does our glance
spring from point to point, and in its wanderings it is followed slavishly by the visual point,
in whose movements we have greater agility than in any other movement, for no organ is so
continuously used as the visual organ (Hering 1942, page 83).

Hering’s chapter seems to have diverted interest from his brief but insightful experiments
on eye movements during reading, published in the same year (Hering 1879b), the first
page of which is shown in figure 14b. While the Handbuch chapter was being prepared
for publication, Hering’s attention was drawn to an article by Hueter (1878). In it Hueter
made a passing observation that sounds could be heard when a rubber tube was applied
to the closed eyelid. He suggested that the sound was generated by blood flow through the
capillaries in the lids. Hering (1879b) presented evidence to indicate that the sounds were
a consequence of muscle contractions. He attached a rubber tube to a cigar holder and
listened to the sounds produced when it was placed on the eyelids: he “heard a surprisingly
strong and whirring roar” (page 137). When he placed the device on the eye of curarised dogs
or rabbits, the sounds ceased even though the blood flow continued. Having determined that
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the sounds reflected muscular contractions, Hering applied the technique to the eye lid of an
open eye. Even when he tried to keep his eyes still, he heard the sounds: “Throughout one’s
observations, one hears quite short, dull clapping sounds, which follow each other at irregular
intervals” (page 145). Hering was able to use his experience with afterimages to establish
that the sounds were correlated with eye movements by comparing them: “every clapping
sound corresponds to a displacement of the afterimage” (page 145). This was confirmed by
movements of floaters, which occurred with the clapping sounds.

Hering’s study is significant not only because he compared afterimage movements with
the sounds of muscular movements, but also because he applied the technique to reading:
“One can observe the clapping sounds very clearly during reading. Although the eyes appear
to glide steadily along the line, the clapping sounds disclose the jerky movement of the
eyeball” (1879b, page 146). The sounds were louder when the eye moved from the end of
one line to the beginning of the next, and they were evident when observers read lines of
text; however, the sounds disappeared if subjects were instructed to fixate a stationary target.
It is also of note that he used the term ‘jerks’ (Rucke in German) because it is equivalent to
using the term ‘saccades’ to describe rapid eye movements if he had been writing in French.
Thus, Hering described the discontinuity of eye movements and recognised the class of
rotations that we now refer to as saccadic. He was amongst the first to offer a description of
the discontinuity of eye movements outside the context of vestibulo-ocular reflexes.

(a)                                                                     (b)

Figure 14. (a) Hering’s Spatial Sense. Hering published a long chapter on the spatial sense and eye
movements in 1879, the title page of which is shown. The portrait was derived from a photograph
kindly supplied by Leo Hurvich. (b) The sounds of eye movements. In the same year a shorter article on
muscle sounds appeared, the first page of which is shown. It was in this article that Hering related the
muscle sounds to jerky eye movements during reading. His portrait is derived from an illustration in
Lesky (1965) (© Nicholas Wade).

Hering’s report of his experiments was published in the same year as Javal gave a brief
description of ‘saccades’ during reading. Javal is generally considered to have instigated
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research in eye movements during reading. In fact, Javal said virtually nothing about eye
movements in his eight essays on the physiology of reading, published in 1878 and 1879 (see
Wade and Tatler 2005, 2009). Saccades were only mentioned in passing on the penultimate
page of his final article (which is shown in figure 13b). These were not the only attempts
to measure eye movements at that time. Most employed afterimages and compared their
displacements to real images. Javal (1878) used this technique to establish that the eye glided
horizontally across lines of text with no vertical deviations. Measurements of eye movements
during reading were carried out in Javal’s laboratory by Lamare and reported in passing by
Javal: “Following the research of M Lamare in our laboratory, the eye makes several saccades
during the passage over each line, about one for every 15–18 letters of text. It is probable that
in myopes the eye reacts with a rapid change in accommodation with every one of these
saccades” (Javal 1879, page 252). Javal tried, unsuccessfully, to attach a pointer to the eye so
that eye movements could be recorded on a smoked drum. He also tried, with a similar lack
of success, to measure the deflections of light from a mirror attached to the eye. Throughout,
his concern was with distinguishing between horizontal and vertical eye movements. It was
Lamare who observed and recorded the jerky or saccadic movements during reading in 1879.
However, he did not describe his experiments until thirteen years later. He tried various
methods, including observing the eyes of another person, but:

The method that gives the best results is one by which the movements are heard via a drum
with an ebonite membrane in the centre and to which a small tube is attached; the tube is in
contact with the conjunctiva or eyelid and is connected to both ears by rubber tubes. . . The
apparatus yields distinctive sounds which an assistant can count and add, and note for each
line. The return movement of the eyes to the beginning of a line gives a longer and louder noise
that is easy to recognise; one counts the number of saccades from the start of the line to be able
to note the number of divisions that occur in a line (Lamare 1892, page 357, original emphasis).

(a)                                                (b)

Figure 15. (a) Tscherning’s Optique. The portrait of Marius Hans Erik Tscherning (1854–1939) after a
[frontispiece photograph in Tscherning (1900)] is embedded in the first page of his chapter on eye
movements in his Optique Physiologique (1898). (b) Dodge’s camerawork. Raymond Dodge (1871–1942)
[after a portrait in Murchison (1930)] carried out some of the most elegant early studies on eye
movements and reading. In 1901, together with Cline, he developed a photographic recording method
of tracing the movements during reading; the camera device is shown here as is the photographic
tracings on the right (© Nicholas Wade).

Lamare’s intricate technique for recording eye movements was clearly described by Javal’s
successor as director of the ophthalmological laboratory at the Sorbonne, Marius Hans Erik
Tscherning (figure 15a): he did not mention Javal in the context of his brief description
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of saccadic eye movements in his Optique Physiologique (Tscherning 1898); the book was
translated into English two years later. He noted:

The eyes are, therefore, in perpetual motion which is made by jerks: they fix a point, make a
movement, fix another point, and so forth. While reading, the eyes move also by jerks, four
or five for each line of an ordinary book. Lamare constructed a small instrument, formed by
a point which is supported on the eye across the upper eyelid, and which is fastened to the
ears of the observer by rubber tubes. With this instrument each movement of the eye causes a
sound to be heard. We hear four or five sounds during the reading of one line, and a louder
sound when we begin to read a new line (Tscherning 1900, page 299).

Lamare’s technique bears a remarkable similarity to that employed by Hering in 1879;
indeed, Hering remarked that he had been aware of the muscle sounds for years. Thus both
Hering and Lamare should be accorded the credit for demonstrating the discontinuity of eye
movements in reading. It is of interest to note that Tscherning’s (1898) book used the word
‘saccades’, which was translated as ‘jerks’ in the English edition (Tscherning 1900).

A mechanical means of measuring nystagmus was tried by Rählmann (1878) and later
Ahrens (1891) applied similar methods to reading. Ahrens attempted to record eye move-
ments directly by placing an ivory cup on the cornea and attaching a bristle to it; movements
could be registered by the displacements of the bristle on a revolving smoked drum. He
was not able to obtain any detailed recordings of eye movements, but his method was
adopted by Delabarre (1898) at Brown University and Huey (1898, 1900) at Clark University to
record eye movements during reading. Edmund Huey (figure 16) noted that: “the most casual
observation showed that the eye moved along the line by little jerks and not with a continuous
steady movement” (Huey 1898, page 583). He then went on to record eye movements with a
similar system (figure 16a) to that used by Delabarre. Both methods used plaster-of-Paris eye-
cups, which required the eye to be anaesthetised with cocaine. Huey refined the technique
and was able to register discontinuous eye movements during reading. Huey also refined the
controls necessary for eye movement recording. The head was stabilised by head clamps and
an individual bite-bar; a calibration recording was made initially, with the eye moving from
one end of the line to the other; he also used a time marker.

Huey (1898) appears to have been the first writer in English to cite Javal’s work, although
it was with reference not to eye movements but to accommodation while reading. In a later
article, Huey (1900) elaborated on Javal’s description of eye movements during reading
and indicated that he had corresponded with Javal. Huey also made reference to Lamare’s
studies: “Lamare, working with Javal, finding that the movement of the eye in reading was
not continuous, but by little jerks (par saccades), devised the following method for counting
these” (Huey 1900, page 285). Huey then gave a brief account of Lamare’s auditory method of
detecting eye movements. Javal was not cited in Huey’s (1901) second article on reading.

Several years later, in his book The Psychology and Pedagogy of Reading (the title page
of which is shown in figure 16b), Huey provided an historical account of research on eye
movements and reading. It is in this book that Huey established Javal as the founder of
research in this area:

As you watch the reading [of another person], you notice, too, that the eyes do not move
continuously from left to right along the line, but proceed by a succession of quick, short
movements to the end, then return in one quick, usually unbroken movement to the left. You
find all this very evident. And yet most of those who have studied the eye have curiously failed
to note that the movement was discontinuous; and up to 1879, when Professor Javal called
attention to it, I find no mention of the fact in the literature. Indeed, I have not myself seen
mention of these reading movements until 1898, except in the writings of Javal and some
other French authors who took up his discovery, and in a paper published in 1895 by Professor
Alexander [Crum] Brown, of Edinburgh. It is a curious instance of the failure of scientists
to make first-hand observations except along certain lines that have become habitual. . . .
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Professor Javal, of the University of Paris, seems, as has been said, to have been the first to
note the actual character of the eye’s movements in reading. He concluded that there was
a pause about every ten letters, and thought that this was about the amount that could be
seen clearly at one fixation. He found that after reading he had after-images of straight gray
lines corresponding to the parallel lines of print, and concluded that the eye’s fixation point
did not leave the line as it moved forward in reading. . . . While not all of Professor Javal’s
observations are conclusive, he deserves more than does anyone else the credit for making the
initial discoveries in this field, and for initiating a considerable number of later studies (Huey
1908, pages 15–16, 18).

(a)                                                                           (b)

Figure 16. (a) Reading Huey’s record. Edmund Huey (1870–1913) recorded eye movements during
reading with a lever attached to a plaster eye-cup which moved a pen over a rotating smoked drum.
The tracing on the smoked drum was photographed and then engraved (Huey 1900). A dimly defined
portrait of Huey hovers behind the tracing. (b) Huey’s history. The same portrait of Huey [derived from
Taylor (1937)] is combined with the title page of his book in which Javal was championed as the first
person to record saccadic eye movements during reading (© Nicholas Wade).

It is perhaps this last statement, assigning credit to Javal, that has led others, on the basis
of Huey’s writing, to accord Javal the honour of having conducted the experiments on eye
movements and reading rather than Lamare. Hering’s work was ignored completely.

As the 20th century began, there was a proliferation of eye-tracking technologies. The
lever devices of Delabarre and Huey were limited by their mechanical properties: they
applied additional force to the eye, and their inertia resulted in considerable overshoots
in the eye movement traces recorded. Alternative devices were developed rapidly in which
direct attachment between eye and recording surface was not required. Orschansky (1899)
attempted to record light reflected from a mirror attached to the surface of an eye-cup,
and variants of this principle were used throughout the 20th century. The key figure in the
development of such devices was Dodge (figure 15b). He carried out his initial studies on eye
movements with Benno Erdmann at the University of Halle in Germany, and he continued
them on his return to America, particularly at Wesleyan University, Connecticut. Dodge
appreciated the errors and pitfalls of self-observation when describing eye movements and
perception in the same way that Wells had distrusted Porterfield’s recourse to subjective
experience more than 100 years earlier. Consequently, Dodge employed the use of an assistant
to observe his eye movements, or to be observed:

It will be clear that when the eye moves as rapidly as possible from one fixation point to the
other nothing new is seen; but it will seem that, when the eye moves more slowly, the entire
line is seen very distinctly. If the observer takes the precaution to have some one watch his
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eyes, as recommended, he will find that what in self-observation passes for slow movements of
the eyes is in reality broken by one or more clearly defined full stops (Dodge 1900, page 457).

Dodge then developed photographic devices that required no attachment on the eye and
that were more comfortable for the participants (Dodge and Cline 1901; Dodge 1903, 1904).
After Dodge’s development of the photographic eye tracker there followed something of a
revolution in eye movement research and a proliferation of new experiments in this field (see
Taylor 1937). Other researchers developed similar convenient and effective eye trackers, and
research extended beyond the domain of reading. Researchers began to consider whether the
newly described saccade-and-fixate strategy applied to tasks other than reading, and it was
soon realised that this was the case. The proliferation of eye-tracking devices at the end of
the 19th century went hand-in-hand with a rapid evolution of ideas about the link between
fixations, saccades, perception, and cognition. An immediate application of the recognition
of saccades and fixations was to consider how our apparently smooth and continuous visual
experience could be reconciled with oculomotor behaviour that was anything but smooth
and continuous.

6.2 Eye movements in picture viewing
Soon after the discovery of saccades and fixations during reading, George Malcolm Stratton
(figure 17a) considered whether the places that the eyes were brought to rest might correlate
with the perceptual experience of illusions. Stratton carried out his initial work in Wundt’s
laboratory at Leipzig and continued his research at the University of California. He employed
a photographic technique to examine eye movements when viewing simple geometrical
patterns (Stratton 1902). This was an important new direction for eye movement research and
served to highlight the importance of saccades outside the context of reading. Stratton was
surprised by the discontinuity of eye movements recorded: “The eye darts from point to point,
interrupting its rapid motion by instants of rest. And the path by which the eye passes from
one to another of these resting places does not seem to depend very nicely upon the exact
form of the line observed” (Stratton 1902, page 343). Stratton’s work is significant because
it attempted to bridge the gap between visual phenomena (illusions), cognition (aesthetic
judgements), and the underlying mechanisms (eye movements and fixations). Moreover,
his studies signified a shift of emphasis in approaches to understanding the link between
oculomotor behaviour and perception. Where his predecessors had primarily considered
perception with respect to the movements of the eyes, Stratton’s work shows a transition
from this approach to an emphasis upon the locations selected for fixation.

The transition is most evident in Stratton’s (1906) article exploring the relationship
between eye movements and perception when viewing simple patterns and line illusions.
He placed emphasis not only on the movements of the eyes but on the locations at which
the eyes paused for fixations: “One is struck by the almost grotesque unlikeness between the
outline observed and the action of the eye in observing it. For the most part the eye moves
irregularly over the figure, seeking certain points of vantage from which the best view of
important features may be obtained. And these positions are marked by the eye’s momentary
resting there” (Stratton 1906, page 94). Despite this shift of emphasis in the direction of
fixations, Stratton was unable to reconcile viewing behaviour with the aesthetic experience:
“The sources of our enjoyment of symmetry, therefore, are not to be discovered in the form
of the eye’s behaviour. A figure which has for us a satisfying balance may be brought to the
mind by most unbalanced ocular motions” (Stratton 1906, page 95). It is clear from Stratton’s
closing remarks in his article on eye movements and symmetry that he appreciated the gulf
between perception and cognition and that he was aware that his work was defining new
questions in vision that would be addressed in the future.
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(a)                                            (b)

Figure 17. (a) Inverted visionary. George Malcolm Stratton (1865–1957; modified from a portrait kindly
provided by Karen De Valois) is better known for his experiments on inverted vision than for his
studies of eye movements. He employed photographic techniques for examining eye motion paths
over geometrical shapes. (b) Waves of eye movements. Guy Buswell (1891–1994) [after a portrait in
Taylor (1937)] together with eye movement records of one observer viewing “The Wave” painted by
Hokusai; black circles represent fixations, and the lines indicate the saccades that moved the eye from
one fixation to the next (from Buswell 1935) (© Nicholas Wade).

It is the question of what drives the selection of particular locations upon which to
fixate that was eventually to assume unrivalled prominence in both eye movement and
attention research late in the 20th century. Perhaps the key figure in the emergence of this
area of research was Guy Buswell (figure 17b) at the University of Chicago. While Buswell’s
(1937) research on reading is probably his most renowned work, it was from his study of eye
movements when viewing pictures that one of his major contributions to eye movement
research arises. The latter work was published in his impressive monograph How People Look
at Pictures (Buswell 1935). He reported eye movement data recorded from 200 participants
each viewing multiple pictures, such that his data comprised almost 2,000 eye movement
records, each containing a large number of fixations. This volume of eye movement data is
impressive by modern standards, but particularly so given the technology at the time and the
need to transform manually the horizontal and vertical position of the eye indicated in the
eye movement records into precise locations on the pictures viewed. This work was the first
to explore systematically eye movements of observers while viewing complex pictures, rather
than text or simple geometrical patterns, and represented something of a revolution in eye
movement research. It is interesting to note that while Buswell’s work is heralded as a key
study in eye movement research, the character of the eye movements themselves was not
the topic of much consideration: rather it was about the placement of the fixations between
them.

Buswell’s monograph explored a wide range of issues regarding the eye movements made
while viewing pictures, including some surprisingly modern concerns: he looked at the
overall distribution of fixations on pictures; he compared the first few fixations on a painting
with the last few; he compared the durations of fixations made early in viewing with those
made near the end of viewing; he looked at how fixation duration changed with viewing
time; he compared the consistency between different observers when viewing the same
picture; and he looked at the influence of instructions given to observers upon their eye
movements when viewing a picture. Buswell made density plots of where all participants
fixated when viewing pictures and showed that not all locations and objects in pictures
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are fixated, with particular ‘centres of interest’ where fixations are concentrated. He also
appreciated that there could be quite large individual differences in where people fixate
when viewing pictures.

The differences that were present in the locations fixated by individuals when viewing
each image were also reflected in the durations of the fixations, with a large variation
between observers in their average fixation duration on each picture. Buswell’s investigation
of individual differences extended to exploring differences between artistically trained
individuals and those without training, between children and adults, and between Western
and Oriental participants. In all cases, differences between the groups were small: “The
average differences between the groups were so much less than the individual differences
within each group that the results cannot be considered significant” (Buswell 1935, page 131).
Differences were found in the eye movement data that emerged over the course of viewing a
picture for some time. The regions fixated on in the picture were more consistent between
observers for the first few fixations than for the last few on each picture. He also found that
fixation duration increased over the course of viewing a picture for some time.

Buswell devoted a chapter of the book to looking at the influence of the characteristics of
the picture on where eyes fixate. This work is very reminiscent of that conducted some years
earlier by Stratton, although he did not cite Stratton’s work. In places Buswell appeared to
argue that eye movements do tend to follow contours in pictures. This is contrary to Stratton’s
suggestion that eye movements do not seem to be particularly influenced by the form of the
figure being viewed. However, other aspects of Buswell’s data suggested less concordance
between eye movements and the characteristics of the picture. When he showed participants
more basic designs and patterns he found that: “The effect of different types of design in
carrying the eye swiftly from one place to another is apparently much less than is assumed
in the literature of art. . . . The writer should emphasize that the data from eye movements
are not to be considered as evidence either positively or negatively for any type of artistic
interpretation” (Buswell 1935, page 115). Like Stratton, Buswell felt that the pattern of eye
movements was insufficient to explain our visual experience, and so he highlighted the need
to appeal to cognitive explanations of vision.

Perhaps the most often overlooked aspect of Buswell’s work was his investigation of
how different instructions given to observers prior to viewing an image can influence the
locations selected for fixation during viewing. For example, when presented with a picture
of the Tribune Tower in Chicago, eye movements were first recorded while the participant
viewed the picture “without any special directions being given. After that record was secured,
the subject was told to look at the picture again to see if he could find a person looking out
of one of the windows of the tower” (Buswell 1935, page 136). Very different eye movement
records were obtained in these two situations, demonstrating that cognitive factors such as
the viewer’s task can have a strong effect upon how a picture is inspected.

The question of the factors underlying fixation placement was revived by Alfred Yarbus
(figure 18) at Moscow in his research during the 1950s and 1960s (translated into English in
Yarbus 1967). Within this work, Yarbus conducted an experiment where a single observer was
shown the same painting (Repin’s An Unexpected Visitor) seven times, but with a different
question asked before each viewing. This elegant experiment confirmed Buswell’s earlier
observation that the instructions given to an observer can radically change the places that the
observer fixates. Yarbus’s demonstration has become a classic in eye movement research and
is frequently cited as an unequivocal demonstration that high-level factors can overshadow
any low-level, stimulus-driven guidance of attention (see Tatler et al 2010). Moreover, in
his measurements of eye movements when looking at pictures of people, Yarbus (1967)
established a feature that has become a canon of face perception. Fixations are focussed on



60 N J Wade

the eyes and mouth, and this triangular scanning pattern was demonstrated on photographs
of faces. The scan paths superimposed on a portrait of Yarbus, shown on figure 18b, right,
are those that he measured when looking at a full-face photograph of “Girl from the Volga”
(Yarbus 1967, figure 115).

(a)                                                                 (b)

Figure 18. (a) Yarbus translated. Yarbus is shown during his military service, taken around 1944,
together with the cover of the English version of his book. (b) Scanning Yarbus. Yarbus, photographed
during the 1980s, with the pattern eye movements he recorded when scanning a face. The two
photographs from which the portraits of Alfred Luk’yanovich Yarbus (1914–86) were constructed
were kindly supplied by Galina Rozhkova (© Nicholas Wade).

6.3 Fixational eye movements
Yarbus devoted much more of his book to examining conditions in which the eyes do not
move. Indeed, much of the research in mid-20th century was concerned with this issue. It
was fuelled by the desire to determine whether involuntary eye movements had a deleterious
effect on visual acuity. The idea is an old one, as James Jurin (1684–1750) suggested that
complex objects could be resolved in more detail “if the eye be supposed to fluctuate ever
so little” (Jurin 1738, page 151). It was possible to examine this hypothesis with images that
were stabilised with respect to the retina. Yarbus developed a full-fitting contact lens which
retained its position by suction. With this optical system, he found that “in any test field,
unchanging and stationary with respect to the retina, all visible differences disappear after
1–3 sec, and do not reappear in these conditions” (Yarbus 1967, page 59). There were some
differences in the results obtained in other laboratories examining stabilised retinal images,
and the source of these was examined by Barlow (1963). He used a full fitting contact lens
and a suction cap after the manner of Yarbus in order to compare their possible slippage; an
afterimage was used as a perfectly stabilised target. The suction cap was more stable than
the full-fitting contact lens, but neither was free from some slippage. His conclusion was that
“Good-quality images stabilized as well as possible . . . ‘blur’ and lose contrast rapidly: detail
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and texture cease to be visible, and do not reappear” (Barlow 1963, page 50). It is of interest
to note that the benchmark of ocular stability was the afterimage—the phenomenon that
provided the initial insights into the ways the eyes moved.

The photographic recording techniques developed by Dodge and others were not precise
enough to resolve very small eye movements. From the early 1950s optical techniques were
employed to measure them and also to present stimuli that were optically stabilised on
the retina; that is, they moved with movements of the eyes. Three research groups were
very active in this initial phase, Ditchburn and Ginsborg at Reading University, and Riggs
and Ratliff at Brown University, and Barlow at Cambridge. During fixation the eyes undergo
high frequency, low amplitude tremors, onto which are superimposed slow drifts and rapid
flicks or microsaccades. These were demonstrated by sets of complex compensatory optical
systems or with contact lens devises (see Ditchburn 1973). The pattern of involuntary eye
movements can be seen in figure 19a superimposed on the portrait of Floyd Ratliff, one
of the pioneers who used such devises (Ratliff 1952). Ratliff and Riggs (1950) employed an
optical lever system and photography to record the involuntary motions of the eye during
fixation. They found small rapid motions of about 17.5 seconds of arc at 30–70 Hz, slow
motions of irregular frequency and extent, slow drifts and rapid jerks. Barlow (1952) placed
a droplet of mercury on the cornea and photographed the eye during motion and fixation;
the instabilities during fixation were small but measurable. He confirmed his photographic
measurements by comparing them with afterimages.

(a)                                                                     (b)

Figure 19. (a) Unsteady gaze. Floyd Ratliff (1919–99) [after an illustration in Zemon (2002)] within a
pattern of involuntary eye movements during fixation; the high-frequency tremor is superimposed on
the slow drifts (dashed lines), with intermittent microsaccades (after Ditchburn 1973). (b) Darwin’s
grid. Maintaining steady fixation on the central blue dot for about 30 s and then fixating the red dot will
result in an afterimage of the grid; when subjects try to maintain fixation on the red dot, the afterimage
will appear to move around as a consequence of involuntary eye movements. Within the grid is a
low contrast portrait of Erasmus Darwin (1731–1802), which is derived from an illustration in The
European Magazine and London Review 1795 (© Nicholas Wade).

Verheijen (1961) described how the effects of involuntary eye movements can be expe-
rienced by the simple expedient of generating an afterimage and then trying to maintain
fixation. By fixating on the central blue dot in figure 19b for long enough to generate an
afterimage (around 30 s) and then attempting to fixate on the red dot, the minor involuntary
movements of the eyes will be expressed in shifts of the negative afterimage. It will be evident
from carrying out this task that it is difficult to maintain fixation. Another consequence
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follows from prolonged fixation, and it was described by Erasmus Darwin: “On looking long
on an area of scarlet silk of about an inch in diameter laid on white paper... the scarlet colour
becomes fainter, till at length it entirely vanishes, though the eye is kept uniformly and
steadily upon it” (Darwin 1794, page 19). Not only does the colour fade, but peripheral targets
disappear. He made this discovery in the context of his experiments on afterimages, which
demanded prolonged fixation of colour patches in order to render them visible. The intensity
of the colour declined until the whole patch ceased to be visible. This can also be experienced
with figure 19b, as it contains a low contrast portrait of Erasmus Darwin; the blue dot is at
the centre of Darwin’s right eye, and the peripheral parts of the portrait will fade from view as
fixation is maintained.

The instability of the eyes was noted from studies employing afterimages. It had long been
recognised that even when apparently fixating stably, the eye is rarely truly still. However, it
is not always evident whether some of the early writers were referring to instability during
fixation or general movements of the eyes. For example, André Du Laurens (1558–1609)
noted that “the eye standeth not still but moveth incessantly” (Du Laurens 1599, pages
28–29). It is perhaps more likely that the small involuntary eye movements were described by
Edmé Mariotte (1620–84); he is better known for his account of the blind spot than for his
observations on eye movements. He made brief reference to such instabilities, suggesting
that they were involuntary: “The Eyes are always in motion, and very hard to be fixt in one
place, though it be desired” (Mariotte 1683, page 266). This conclusion was probably reached
by careful observation of the eyes of another person. Darwin’s son, Robert Darwin (figure 20),
amplified this with regard to forming afterimages:

When we look long and attentively at any object, the eye cannot always be kept intirely
motionless; hence, on inspecting a circular area of red silk placed on white paper, a lucid
crescent or edge is seen to librate on one side or the other of the red circle: for the exterior parts
of the retina sometimes falling on the edge of the central silk, and sometimes on the white
paper, are less fatigued with red light than the central part of the retina, which is constantly
exposed to it; and therefore, when they fall on the edge of the red silk, they perceive it more
vividly. Afterwards, when the eye becomes fatigued, a green spectrum [afterimage] in the form
of a crescent is seen to librate on one side or other of the central circle, as by the unsteadiness
of the eye a part of the fatigued retina falls on the white paper (Darwin 1786, page 341).

These effects can be observed in figure 20; the coloured regions are not circles of silk but
a portrait of Robert Darwin (the son of Erasmus Darwin and father of Charles). Instabilities
during fixation on the black dot can be seen at the edges of the blue oval. When fixation is
shifted to the black dot on the right, a complementary afterimage will be seen, and Darwin
will have recovered from his prior jaundice! Both Erasmus and Robert Darwin wrote on
afterimages (or ocular spectra as they were then called) and used them as an index of eye
movements (see Wade 2002, 2010). Erasmus Darwin (1794) included a chapter on ‘motions
of the retina’ in his Zoonomia, and it is principally concerned with experiments employing
afterimages. It is of interest that the afterimage remains the benchmark for determining the
accuracy of optical image stabilisation.

Extending the roll call of pioneers to the 1960s introduces many more names than can
be listed here. Excellent accounts of the research on eye movements in the last six decades
can be found in Carpenter (1988, 1991), Eggert (2007), Findlay and Gilchrist (2003), Land and
Tatler (2009), Legge (2006), Leigh and Zee (2006), and Tatler (2009).

7 Conclusion

Several paradoxes are posed by investigations of eye movements when considered in
an historical context. Oculomotor behaviour constitutes a fundamental feature of our
exploration of the world. We are aware that our own eyes move, and we can readily
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Figure 20. Ocular spectra. If you fixate the black dot on the portrait of Robert Waring Darwin
(1766–1848) for about 30 s and then fixate the black dot on the right, a complementary afterimage will
be seen. During adaptation, yellowish crescents will be seen beyond the boundaries of the blue ellipse,
again signalling the instability of the eyes during attempts to maintain steady fixation (© Nicholas
Wade).

detect movements in the eyes of those we observe. This awareness was, however, partial.
Throughout the long descriptive history of studies of eye movements, a vital characteristic
of them remained hidden from view, both in ourselves and in our observations of others.
The rapid discontinuous nature of eye movements is a relatively recent discovery, as are the
small involuntary movements that accompany fixation. For most of recorded history, the
eyes were thought to glide over scenes to alight on objects of interest, which they would fix
with unmoved accuracy.

Another paradox is that initial knowledge about eye movements derived from generating
stimuli that did not move with respect to the eye when the eye moved. The first of these
was the afterimage, which, since the late 18th century, has been applied to determining the
ways the eyes moved. More complex photographic recording devices appeared a century
later, and the assistance of computers was incorporated three quarters of a century later
still. Nonetheless, the insights derived from the skilful use of afterimages have tended to be
overlooked in the histories of eye movements. One of the reasons that less attention has been
paid to studies using afterimages is that they became tainted with other ‘subjective’ measures
of eye movements as opposed to the ‘objective’ recording methods of the 20th century. A
second factor was that the early studies were concerned with vertigo, which resulted in
involuntary movements of the eyes.

The objective eye trackers developed in the late 19th and early 20th centuries allowed
crucial new insights into the true nature of eye movements. Researchers were unanimously
surprised by what they found; eye movements were not as smooth and continuous as
they subjectively appeared. These new devices for measuring eye movements accelerated
interest in their nature. The technological advancements allowed new questions to be
addressed and indeed identified new and unexpected questions in the psychology and
physiology of eye movements and their relation to cognition and visual experience. Eye-
tracking technology continues to evolve, and with it, so do the range of questions that can be
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addressed. Increasingly, the eyes are measured when inspecting objects in three-dimensional
space, and it is probable that these applications will have the most profound influence on
our understanding of this most integrated aspect of active vision.
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