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detected up to year after injury
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Abstract

Concussions are associated with an array of physical, emotional, cognitive, and sleep symptoms at multiple timescales.

Cognitive recovery occurs relatively quickly – five-to-seven days on average. Yet, recent evidence suggests that some

neurophysiological changes can be identified one year after a concussion. To that end, we examine more nuanced

patterns in cognitive tests to determine whether cognitive abilities could identify a concussion within one-year post

injury. A radial-basis (non-linear boundary) support vector machine classifier was trained to use cognitive performance

measures to distinguish participants with no prior concussion from participants with prior concussion in the past year.

After incorporating only 10 cognitive measures, or all 5 composite measures from the neurocognitive assessment

(Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT)), over 90% accuracy was achieved in iden-

tifying both participants without prior concussions and participants with concussions in the past year, particularly when

relying on non-linear patterns. Notably, classification accuracy stayed relatively constant between participants who had a

concussion early or late in the one-year window. Thus, with substantial accuracy, a prior concussion can be identified

using a non-linear combination of cognitive measures. Cognitive effects from concussion linger one-year post-injury,

indicating the importance of continuing to follow concussion patients for many months after recovery and to take special

note of constellations of cognitive abilities.
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Introduction

Concussions are a growing public health issue. From

2006–2014, the Center for Disease Control (CDC)

reported a 53% increase in visits to the emergency

department, hospitalization, and death due to TBI-

related injury.1,2,3,4 To assist healthcare practitioners,

a variety of assessments have been developed to mea-

sure the extent of disruption caused by the TBI injury.
Computer-based neurocognitive assessments have

become common to detect concussion onset and to

determine concussion recovery.5 While typical cogni-

tive recovery tends to be of short duration, long term

effects of prior concussions have been reported well

beyond typical recovery windows.6,7 In the present

work, we use a standard machine learning technique

to identify the presence of concussion-based changes

to standard cognitive factors up to one year after
onset, which can aid in monitoring athlete’s cognitive
health.
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Concussions are associated with an array of cogni-
tive physical, emotional, and sleep symptoms8 and
these symptoms do not all heal at the same rate. To
assess cognitive recovery, neurocognitive assessments
are intended to provide objective data regarding cogni-
tive performance in order to assist healthcare providers
in making decisions on an athlete’s brain health.9,10

Given the value of computer-based instruments for
assessing baseline and post-concussion cognitive func-
tion, several states have passed laws mandating neuro-
psychological testing for various levels of athletes.11

These tests tend to be relatively stable measures.6

Further, they are self-sustaining; the administration
of instruction, analysis of data, and interpretation of
results are all provided12 and can be administered
simultaneously to large groups. Data collection is pre-
cise and objective and data storage/retrieval is easy.10,13

Immediate Post-concussion Assessment and Cognitive
Testing (ImPACT), in particular, is used in thousands
of high schools and universities within the U.S.14

Typically, cognitive recovery from a concussion is
reported to be of short duration. Average cognitive
recovery from a concussion for high school and college
athletes is five-to-seven days.1 With that said, some
concussion sufferers have lingering post-concussion
symptoms. A prior concussion(s) predisposes patients
to repeat concussion injury with longer recovery trajec-
tories.6 Further, the concussion inflammatory cascade
may lead to elevated biomarkers at 30 days after con-
cussion7; well beyond the typical recovery window.
Thus, after apparent return to baseline cognitive per-
formance, effects remain from concussion injury,
including susceptibility to future concussions.

In the present study we examine more nuanced pat-
terns in recorded cognitive tests to assess the effects of a
concussion within one-year post injury. Rather than
look forward and assess whether a specific symptom
(s) or cognitive test score predicts a rapid or prolonged
recovery, our goal was to look backward and deter-
mine whether test scores predict a prior concussion.
We use support vector machines3 to identify potentially
complex rules for detection of prior concussions. A
diverse collection of recent studies has used machine
learning methods similarly to detect concussions
based on symptoms and neuroimaging.15–18

At the U.S. Air Force Academy (hereafter referred
to as “Academy” for short), the standard of care was
adjusted from an annual neurocognitive baseline for all
collegiate athletes to an annual neurocognitive baseline
for all cadets. This adjustment was made, in part,
because all cadets participate in athletics and military
training events. Thus, an entire class of rising college
sophomore cadets complete a baseline ImPACT as part
of their pre-academic year annual medical evaluation.
Our goal is to use their current baseline neurocognitive

performance to determine whether we can accurately
predict whether a prior concussion had occurred during
the freshman year, i.e. the prior 12months. Given the
change to the standard of care this was a unique oppor-
tunity to detect whether factors remain elevated despite
a complete clinically-defined concussion recovery in a
large sample. In total there were 994 participants, of
which 186 self-reported a prior concussion, and 55
cadets self-reported a recent concussion that occurred
during the past 12months, i.e. their freshman year at
the Academy. Thus, this is a unique opportunity to
detect factors that remain elevated despite a complete
clinically-defined concussion recovery.

Methods

This following study protocol was deemed Exempt,
Category IV by the U.S. Air Force Academy
Institutional Review Board.

Participants

There were 994 participants. Of these, 217 identified
themselves as female and 777 identified themselves as
male. All participants were of the same academic year;
they were rising sophomores. The average age was
19.30 years (range 18–23 years).

This year group was of interest because the prior
freshman year at the Academy is particularly challeng-
ing. All freshman cadets are required to complete a
military bootcamp – a six week physically demanding
program that includes obstacle courses and pugil stick
competition. During their freshman year cadets take a
mandatory boxing class. Finally, the freshman year
concludes with an additional intense military training
event called “Recognition”. Thus, freshman cadets par-
ticipate in several military training events.

Apparatus

Neurocognitive performance was measured using the
online full-version form of ImPACT which consists of
six categories of cognitive measures.19 This assessment
takes approximately 25minutes to complete. Each
measure is briefly described below. Prior ImPACT
results that cadets may have had from high school ath-
letics were not included. Participants additionally self-
reported the date of their last concussion, if any, as part
of the survey accompanying the ImPACT assessment.

Cognitive measures. The Word Memory task evaluates
attentional resources and verbal recognition memory.
The task is to memorize and recall a set of words. The
Design Memory task evaluates attentional processes
and visual recognition memory. The task is to memo-
rize and recall visual patterns. The X’s and O’s task
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assesses visual working memory, visual processing, and

visual motor speed. The task is to memorize and recall

the location of letters after a distractor task. The

Symbol Match task assesses visual processing speed,

learning, and memory. The task is to memorize and

recall common symbols. The Color Match task assesses

reaction time as well as impulse control/response inhi-

bition. It is a variant of the Stroop effect.20 An example

task would be to select the word “green” when it is

presented in green font color and ignore it when the

color does not match the text. Finally, the Three

Letters task assesses working memory and visual-

motor response speed. The task is to memorize and

recall random consonant letters after a distractor

task. The ImPACT assessment recorded 35 cognitive

performance measures and 5 composite scores for a

total of 40 measures.

Procedure

Cadets completed a baseline ImPACT in June or July

2015. It was administered in the summer prior to their

sophomore year. The assessment was administered in a

computer lab.

Patient involvement

Patient and members of the public were not involved in

the design, management, and conduct of this

experiment.

Concussion history

A total of 800 cadets reported no prior concussion his-

tory; 194 cadets reported history of at least one prior

concussion. There were eight data entry errors. (Cadets

who reported no concussion history, but who entered a

“last concussion date.”) Of the remaining 186 cases of

prior concussion, recent concussions, N¼ 56, were cat-

egorized as occurring within 12months of the admin-

istered test date. Cadets whose latest concussions were

more than 12months prior to their test dates had sus-

tained concussions spreading widely over time; there

were not enough cadets in each year time window for

classifier learning to be performed at the level of the

one-year concussion group studied here. Thus, only

recent “past 12month” concussions were considered.

Analysis

We trained a support vector machine3 classifier to dis-

tinguish participants with prior concussions from par-

ticipants with no prior concussions based on ImPACT

neurocognitive measures. Across all analyses, we used a

10-fold cross validation.

We used a support vector machine (SVM) with

radial basis kernel, to capture a potentially non-linear

boundary between participants with and without a

prior concussion(s). Prior to learning, cognitive perfor-

mance measures (features) were normalized to have

zero mean and unit variance. The ‘KernelScale’ param-

eter was set to ‘auto’ which selects an appropriate scale

factor using a heuristic procedure, following default

function settings in the SVM package and standard

practice in the field. All classification analyses were

performed in MATLABVR .21

For 10-fold cross validation, the total data set for

each analysis was split into ten subsets. During each

“fold,” one subset was used as a test set, and the other

nine subsets were used to form the training set. As there

were only 56 reported prior concussion injuries, the

data was shuffled to ensure baseline ImPACT assess-

ments from a minimum of five different prior concus-

sion injuries were in each of the ten testing sets. This

ensured a minimum number of cadets with prior con-

cussion injury could be properly detected in each fold

of analysis. A minimum of five baseline ImPACT

assessments completed by cadets without prior concus-

sion injury were included for each testing set as well.
Greedy forward feature selection was used to iden-

tify the best cognitive performance measures to distin-

guish participants with prior concussion from

participants without reported injury.22 The ImPACT

assessment recorded 35 cognitive performance meas-

ures and 5 composite scores for a total of 40 measures.

SVMs are trained on each of the 40 measures individ-

ually, resulting in 40 corresponding accuracy measures.

The greedy forward feature selection method is used by

selecting the best performing measure on the highest

averaged “prior concussion” (subject with report of

concussion in the past year) and “no prior concussion”

(cadet with report of no prior concussion) prediction

accuracy and was used as the first measure in classifi-

cation. This process repeated for the remaining meas-

ures, adding the single measure that led to the best

improvement in SVM performance when added to

the list of measures found previously.

Data set resampling

The original data set is comprised of 56 prior concus-

sion participants and 800 no prior concussion partici-

pants, omitting participants whose last concussion

occurred over one year prior to impact. The substan-

tially lopsided ratio of prior concussion participants to

no prior concussion participants risks large errors in

classifier learning, as the classifier will be biased to pre-

dict the more common group and ignore the less

common group. For more effective machine learning,

Leeds et al. 3



we generate synthetic new concussion participants to
balance the two groups.

Synthetic Minority Oversampling Technique
(SMOTE) increases the number of occurrences of the
minority group by generating additional synthetic data
points.23 SMOTE, as defined in MATLAB, takes r fea-
ture vectors (in the present study, r¼ 56 concussion
participants), each with dimension n (in the present
study, n¼ 40 ImPACT cognitive measures). A
random point is selected from among the feature vec-
tors and k nearest neighbors are found for this point (in
the present study, k¼ 14, consistent with the 14-fold
increase in the concussion data set to set equal the
number of concussion and non-concussion subjects).
One of these nearest neighbors is randomly selected,
and a line is drawn between these two selected feature
vectors. A random location along this line is selected to
define a new synthetic data point. This process is
repeated k–1 times for each feature vector, increasing
the number of data points by (k–1)� r. SMOTE
returns a new feature vector with dimension (r�, n)
and its corresponding labels (r�, 1).

The “SMOTE Data” is comprised of 784 prior con-
cussion participants and 784 no prior concussion par-
ticipants. The 784 no prior concussion participants
contain the 56 non-concussion participants included
in the down-sampled original data set above, as well
as 728 additional no prior concussion participants ran-
domly taken from the original 800 no prior concussion
subjects. When training and testing on the SMOTE
Data set, both original and synthetic participants
were used for learning in each fold, but only the orig-
inal participants were used to compute testing accura-
cies. Due to the substantial imbalance in concussion
and non-concussion group sizes, accuracies for prior
concussion and no prior concussion groups were com-
puted and reported separately, as in24; the two accura-
cies were averaged with equal weight. We further
demonstrate these re-balanced accuracies are compara-
ble to precision, recall, and F-score statistics.25

Results

The distribution of “recent” concussions that occurred
in the past 12months is presented in Figure 1. No con-
cussions were reported in the most recent month, but
every other previous month had at least two concus-
sions. The peaks in Figure 1 at month four and month
12 are aligned with military training events that occur
during those months that may exposure participants to
a higher risk of concussion. For analyses, prior con-
cussions were grouped into four three-month intervals.
As seen in Figure 1, there were eight concussions
reported within the first three months from the test
date. Within 4–6 months of testing 16 concussions

were reported. Within 7–9 months of testing there
were 13 reported concussions. Finally, 19 concussions
from ten to twelve months of testing, with the majority
focused on the month furthest from testing.

The ImPACT assessment recorded 35 cognitive per-
formance measures and 5 composite scores for a total
of 40 measures.19 The cognitive performance measures
are organized into six categories: Word Memory,
Design Memory, X’s and O’s, Symbol Match, Color
Match, and Three Letters. Figure 2 shows high corre-
lations (>0.6) among tests of the same category, par-
ticularly for Design Memory and Word Memory, with
a smaller subset of high correlation measures for Three
Letters. The Symbol Match and X’s and O’s Tasks had
few correlations above 0.6 within task measures,
though X’s and O’s correlated with several composite
scores. The first performance measure for Color Match
(“Total Correct”) was identical for all cadets studied,
leading to no correlation information for this measure
(blue row/column in Color Match).

SMOTE data provides over 95% accuracy for both
prior concussion and no-prior-concussion classification
(Figure 3(b) to (d)). Only a subset of ImPACT cogni-
tive measures were needed to determine concussion his-
tory. Learning on the SMOTE data set stabilizes after
the first 5–10 features (cognitive measures) are added
under greedy, composite-score only, and randomized
learning conditions. Even using 5 features, mean clas-
sification accuracy reaches 70% with greedy feature
selection (chance accuracy is 50%). Using greedy fea-
ture selection, the first 5 features are drawn from four
distinct cognitive tasks (Table 1). The next five features
(reaching 95% classification accuracy) add one addi-
tional task and one composite score (visual memory).
Within the first 10 features, only two pairs of features
have correlations above r> 0.6. Surprisingly, a ran-
domized draw of features substantially outperforms
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Figure 1. Distribution of reported concussions in 12months
prior to the administered test date. Most recent concussion
recorded for each candidate.
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Figure 2. Correlation matrix among 40 cognitive measures ordered by high correlation.

(a) (b)

(c) (d)

Figure 3. SVM prediction accuracies on prior concussion (black square filled) and no-prior-concussion (black square unfilled) cadets
after each step of greedy feature selection using (a) original data set, (b) SMOTE data set, and (c) SMOTE data set using only
composite scores. (d) Shows accuracies on SMOTE data set with one run of random feature selection.
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greedy selection (Figure 3(d)). The first five randomly
selected features achieve 89% accuracy, compared to
70% for greedy, and the first 10 randomly selected
features achieve 95% accuracy, on par with greedy

selection. The features span four tasks and the two
memory composite scores (Table 1). Using only the
five composite scores achieves 88% classification accu-
racy on SMOTE data (Figure 3(c)). In all three analy-

ses, a moderate amount of feature diversity produces
classification benefits.

Use of precision, recall, and F-score measures for

concussion classification similarly show a strong clas-
sifier performance with only a few features (Table 2).
All measures mirror group-wise accuracies in Figure 3,
as complementary measures of classifier learning on the

imbalanced data set.
Increasing the past-concussion data with additional

synthetic data points substantially aids in training to
predict concussion history (Figure 3(a) vs (b)), and pre-
vents overfitting on the training data.

The majority of prior concussion-classification anal-
yses pursued in this paper employ non-linear separa-
tors, using SVM’s radial basis kernel. Equivalent

experimentation with a linear separator SVM achieved
75% accuracy at best, using 23 features, and only 71%
accuracy with 15 features. These findings indicate the
presence of a non-linear classification boundary for

concussions using cognitive measures.
Beyond simple “concussion” and “non-concussion”

labels, the (radial basis kernel) SVM classifier provides

a score for each cadet expressing the confidence of its
classification. Larger magnitude positive numbers are
more confidently concussion, larger magnitude nega-
tive numbers are more confidently non-concussion.

We find a slight but insignificant increase in concussion

classifier score for cadets with less recent concussions

(Figure 4).

Discussion

Neurocognitive assessments help to provide a baseline

for an athlete/military member in the event of concus-

sion injury and can improve post-concussion assess-

ment and care. They are recommended as part of a

multifaceted approach to return-to-play determina-

tions.14 The purpose of this study was to use machine

learning, specifically support vector machines, to inves-

tigate whether current neurocognitive performance

could accurately predict a prior concussion that

occurred within the past year, indicating statistically

significant differences in cognitive abilities between

individuals without a history of concussion and those

with a history of recent concussion.
High school and college athletes tend to show cog-

nitive recovery from a concussion within five-to-seven

days.1 However, we found that the cognitive effects of

concussions remain and are detectable at least a year

after injury, far beyond the typical two weeks of recov-

ery. ImPACT’s five composite measures are sufficient

to achieve over 88% accuracy in determining if a sub-

ject did or did not have a concussion in the past year.

Mixing ten composite and individual task measures

achieves over 95% accuracy. Prior concussion effects

remained roughly constant across the first twelve

months after the event. There is significant difference

in cognitive abilities between individuals without a his-

tory of concussion and those with a history of recent

concussion.
This finding has several implications. First, our

results indicate the importance of continuing to

Table 1. First 15 cognitive performance measures listed in order of selection using (left) greedy feature selection, (center) random
feature selection, and (right) composite-only features from SMOTE data.

Greedy Random Composite

1 “Design Mem DM Corr” 1 “XO Ave Corr” 1 “Vis Mot”

2 Symb Match Cog Effic Idx 2 “Mem Comp Score Verb” 2 “Impulse Ctrl”

3 “XO Total Corr Interfer” 3 Symb Match Cog Effic Idx 3 “Mem Vis”

4 “Color Match Tot Corr” 4 “Mem Compos Score Vis” 4 “React Time”

5 “Design Mem CD” 5 “Design Mem Hits Delay” 5 “Mem Verb”

6 “XO Ave Incorr” 6 “XO Ave Incorr”

7 Symb Match Tot Corr Vis 7 “Symb Match Ave Corr RT”

8 “Mem Comp Score Verb” 8 “3 Lett Tot Seq Corr”

9 “Word Mem Hits” 9 “Symb Match Ave Corr RT Hidd”

10 “XO Tot Corr Mem” 10 “Tot Symptom Score”

11 “Mem Comp Score Vis” 11 “3 Lett % Lett Corr”

12 “Word Mem Tot % Corr” 12 “Color Match Tot Commiss”

13 “Design Mem Hits Delay” 13 “3 Lett Ave Count Corr”

14 “Design Mem Hits” 14 “Word Mem CD Delay”

15 “Design Mem Tot % Corr” 15 “Symb Match Tot Corr Hidd”
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follow concussions patients for many months after

recovery. Given the effect on cognition, this may be

particularly true for student-athletes. Special note

must be taken of all elements of cognition including

academic performance, and further evaluation and

treatment may be advisable.

Further, additional research is needed to determine

how long post-concussion physiology effects cognitive

performance. This question is also being asked in

emerging MRI research that indicates that some

aspects of brain physiology remain changed one year

after a concussion.2 Thus, more longitudinal research is

Table 2. Comparison of Precision, Recall, and F-score metrics for SVM learning on SMOTE data set with subset of ImPACT features.

Precision Recall F-score Acc. concuss Acc. Non-concuss Acc. average

Greedy

5 feat 0.91 0.86 0.89 0.86 0.89 0.88

10 feats 0.98 0.96 0.97 0.96 0.98 0.97

15 feats 0.97 0.98 0.98 0.98 0.97 0.98

20 feats 0.95 0.98 0.97 0.98 0.95 0.97

25 feats 0.97 0.98 0.98 0.98 0.97 0.98

Composite-only

1 feat 0.46 0.4 0.43 0.4 0.54 0.47

2 feats 0.54 0.35 0.42 0.35 0.77 0.56

3 feats 0.78 0.7 0.74 0.7 0.79 0.74

4 feats 0.89 0.89 0.89 0.89 0.87 0.88

5 feats 0.85 0.93 0.89 0.93 0.82 0.87

Figure 4. Prediction score mean and standard deviation using the first 5, 10, 15, and 20 features chosen through greedy feature
selection.
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needed to determine whether cognitive effects remain
active for multiple years beyond the concussive inci-
dent. Past studies6 have established that history of
prior concussions may worsen the effects of additional
concussion injury.

Additionally, this finding needs to be generalized to
different age populations. Most participants in this
study were late adolescents. It is unknown whether
these findings would generalize to pediatric, younger
adolescent, and mature populations. Thus, more life-
cycle research is needed to determine the lingering cog-
nitive effects on different aged populations.

Also, the long-term effects of concussion are vari-
able and complex. Effects do not co-vary linearly
across all subjects with prior concussion, but follow
one of a set of trends captured by our non-linear sep-
arator. As patients are followed post-concussion, it will
be important to recognize their long-term recovery may
not fall into a single track. Future work is needed to
understand the nature of these multiple sets of cogni-
tive trends and the links between these trends.

In the light of non-disclosure of concussion reported
in the athlete and military personnel literature,26 a sec-
ondary application of these findings may be the retro-
spective diagnosis of an undisclosed concussion. Some
concussion sufferers are unaware of their injury or may
choose not to self-report a potential concussion for a
variety of reasons.27 However, this was not a tested
hypothesis and thus it would be a misapplication of
these findings. A better application would be longer
monitoring and follow-up care of concussion sufferers.

Expansions to the methodology in the present work
would provide valuable additional perspective on the
long-term cognitive impacts of concussion. Concussion
identification was computed using support vector
machine (SVM) classifiers using default settings from
MATLAB.21 Exploration of additional variants of
SVM and of other classifiers would provide valuable
additional perspective on what cognitive patterns con-
tinue to be expressed in the months after concussion
“recovery.” Additional investigation of SMOTE
parameters on learned concussion classification would
provide similar valuable insights.

Expansions to the data set in the present work
would provide valuable additional perceptive.
Concussion effects are studied only in the first year
after onset; future access to a broader data set will be
valuable to allow investigation of cognitive effects in
additional years and decades after onset. “Concussion”
occurrence is determined by participant self-report in
the present data set. Future study of data where iden-
tification of concussions is provided by professionals,
and accompanied by mechanism of injury, will provide
valuable insight into distinctions in the evolution of
cognition after concussion. Additionally, the impact

of multiple concussions is not considered in the present
study, despite its known influence on short-term recov-
ery. Future study removing this confound promises to
improve the already strong SVM ability to predict
recent concussion history based on cognition.

In summary, cognitive recovery from the acute
effects of a concussion tends to be within one week,1

but concussions have lingering effects that may be
detectable long after an athlete is cleared to returned-
to-play or a Soldier is cleared to return-to-duty. The
purpose of this study was to determine whether a
machine learning model could accurately predict
whether a recent concussion had occurred based on
current cognitive performance. A support vector
machine analysis, a specific sub-type of machine learn-
ing model, generated a prediction model that had
greater than 90% accuracy for both prior concussion
and no prior concussion classification. ImPACT com-
posite scores visual-motor speed and impulse control
were instrumental to increasing predictive accuracy.

Authorship contributions

Daniel D Leeds directed data analysis and co-wrote
manuscript; Annie Nguyen led data analysis, collated
tables and figures, and wrote manuscript initial drafts;
Christopher D’Lauro advised on research and edited
manuscript; Jonathan C Jackson collected cadet data,
advised on interpretation of results, and edited manu-
script; Brian R Johnson directed research and co-wrote
manuscript.

Disclaimers

Material has been reviewed by the Walter Reed Army
Institute of Research. There is no objection to its pre-
sentation and/or publication. The opinions or asser-
tions contained herein are the private views of the
author, and are not to be construed as official, or as
reflecting true views of the Department of the Army or
the Department of Defense.

Acknowledgements

We are grateful to our colleagues Col (ret.) Darren Campbell

and Lt Col (ret.) Gerald McGinty for their participation with

data collection.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

8 Journal of Concussion



ORCID iD

Brian R Johnson https://orcid.org/0000-0001-5754-3223

References

1. Williams RM, Puetz TW, Giza CC, et al. Concussion

recovery time among high school and collegiate athletes:

a systematic review and meta-analysis. Sports Med 2015;

45: 893–903.
2. Churchill NW, Hutchison MG, Graham SJ, et al.

Mapping brain recovery after concussion. Neurology

2019; 93: e1980–e1992.
3. Bosner BE, Guyon IM and Vapnik VN. A training algo-

rithm for optimal margin classifiers. In: Proceedings of

the 5th annual ACM workshop on computational learning

theory (ed D Haussler), 1992, pp.144–152. Pittsburgh,

PA: ACM Press.
4. Centers for Disease Control and Prevention. Surveillance

report of traumatic brain injury-related emergency depart-

ment visits, hospitalizations, and deaths—United States,

2014. Atlanta, GA: Centers for Disease Control and

Prevention, U.S. Department of Health and Human

Services, 2019.
5. McCrory P, Meeuwisse W, Dvorak J, et al. Consensus

statement on concussion in sport – the 5th international

conference on concussion in sport held in Berlin, October

2016. Brit J Sport Med 2017; 51: 838–847.
6. Levin HS, Eisenberg HM and Benton AL (eds)Mild head

injury. Oxford, UK: Oxford University Press, 1989.
7. Lovell MR and Collins MW. New developments in the

evaluation of sports-related concussion. Curr Sports Med

Rep 2002; 1: 287–292.
8. Education Commission of the States. Education

Commission of the States, www.ecs.org (accessed 18

March 2021).
9. Elbin RJ, Schatz P and Covassin T. One-year test-retest

reliability of the online version of ImPACT in high school

athletes. Am J Sports Med 2011; 39: 2319–2324.
10. Mayers LB and Redick TS. Clinical utility of ImPACT

assessment for postconcussion return-to-play counseling.

Psychometric issues. J Clin Exp Neuropsychol 2012; 34:

235–242.
11. Allen BJ and Gfeller JD. The immediate post-concussion

assessment and cognitive testing battery and traditional

neuropsychological measures: a construct and concurrent

validity study. Brain Inj 2011; 25: 179–191.
12. Covassin T, Elbin RJ, Stiller-Ostrowski JL, et al.

Immediate post-concussion assessment and cognitive

testing (ImPACT) practices of sports medicine professio-
nals. J Athl Train 2009; 44: 639–644.

13. Asken BM, McCrea MA, Clugston JR, et al. “Playing
through it”: delayed reporting and removal from athletic

activity after concussion predicts prolonged recovery.
J Athl Train 2016; 51: 329–335.

14. Giza CC and Hovda DA. The new neurometabolic cas-
cade of concussion. Neurosurgery 2014; 4: S24–S33.

15. Bergeron MF, Landset S, Maugans TA, et al. Machine
learning in modeling high school sport concussion symp-
tom resolve. Med Sci Sports Exerc 2019; 51: 1362–1371.

16. Daley M, Dekaban G, Bartha R, et al. Metabolomics
profiling of concussion in adolescent male hockey
players: a novel diagnostic method. Metabolomics 2016;
12: 185.

17. Visscher RM, Feddermann-Demont N, Romano F, et al.
Artificial intelligence for understanding concussion: ret-

rospective cluster analysis on the balance and vestibular
diagnostic data of concussion patients. Plos One 2019; 14:
e0214525.

18. Boshra R, Dhindsa K, Boursalie O, et al. From group-
level statistics to single-subject prediction: machine learn-
ing detection of concussion in retired athletes. IEEE

Trans Neural Syst Rehabil Eng 2019; 27: 1492–1501.
19. ImPACT Version 2.0 Clinical User’s Manual, 2004

Retrieved September 27, 2018, from http://www.impact-
test.com/clients.htm.

20. Stroop JR. Studies of interference in serial verbal reac-
tions. J Exp Psychol 1935; 18: 643–662.

21. MATLAB 2018a, The MathWorks, Inc., Natick,

Massachusetts, United States.
22. John GH, Kohavi R and Pfleger K. Irrelevant features

and the subset selection problem. In: Machine learning

proceedings, New Brunswick, NJ, 1994, pp.121–129.
23. Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: syn-

thetic minority over-sampling technique. J Artif Intell

Res 2002; 16: 321–357.
24. Kubat M, Holte R and Matwin S. Machine learning for

the detection of oil spills in satellite radar images. Mach

Learn 1998; 30: 195–215.
25. Weiss GM. Mining with rarity: a unifying framework.

Sigkdd Explor Newsl 2004; 6: 7–19.
26. Foster CA, D’Lauro C and Johnson BR. Pilots and

athletes: different concerns, similar concussion non-

disclosure. PLoS One 2019; 14: e0215030.
27. Baugh CM, Kroshus E, Daneshvar DH, et al. Perceived

coach support and concussion symptom-reporting: dif-
ferences between freshmen and non-freshmen college
football players. J Law Med Ethics 2014; 42: 314–322.

Leeds et al. 9

https://orcid.org/0000-0001-5754-3223
https://orcid.org/0000-0001-5754-3223
http://www.ecs.org

